Quantifying the Effect of Registration Error on Spatio-Temporal Fusion

It is challenging to acquire satellite sensor data with both fine spatial and fine temporal resolution, especially for monitoring at global scales. Among the widely used global monitoring satellite sensors, Landsat data have a coarse temporal resolution, but fine spatial resolution, while moderate r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.487-503
Hauptverfasser: Tang, Yijie, Wang, Qunming, Zhang, Ka, Atkinson, Peter M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 503
container_issue
container_start_page 487
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 13
creator Tang, Yijie
Wang, Qunming
Zhang, Ka
Atkinson, Peter M.
description It is challenging to acquire satellite sensor data with both fine spatial and fine temporal resolution, especially for monitoring at global scales. Among the widely used global monitoring satellite sensors, Landsat data have a coarse temporal resolution, but fine spatial resolution, while moderate resolution imaging spectroradiometer (MODIS) data have fine temporal resolution, but coarse spatial resolution. One solution to this problem is to blend the two types of data using spatio-temporal fusion, creating images with both fine temporal and fine spatial resolution. However, reliable geometric registration of images acquired by different sensors is a prerequisite of spatio-temporal fusion. Due to the potentially large differences between the spatial resolutions of the images to be fused, the geometric registration process always contains some degree of uncertainty. This article analyzes quantitatively the influence of geometric registration error on spatio-temporal fusion. The relationship between registration error and the accuracy of fusion was investigated under the influence of different temporal distances between images, different spatial patterns within the images and using different methods (i.e., spatial and temporal adaptive reflectance fusion model (STARFM), and Fit-FC; two typical spatio-temporal fusion methods). The results show that registration error has a significant impact on the accuracy of spatio-temporal fusion; as the registration error increased, the accuracy decreased monotonically. The effect of registration error in a heterogeneous region was greater than that in a homogeneous region. Moreover, the accuracy of fusion was not dependent on the temporal distance between images to be fused, but rather on their statistical correlation. Finally, the Fit-FC method was found to be more accurate than the STARFM method, under all registration error scenarios.
doi_str_mv 10.1109/JSTARS.2020.2965190
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2020_2965190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8966561</ieee_id><doaj_id>oai_doaj_org_article_ccac051d9ead455281de268a982c1a0a</doaj_id><sourcerecordid>2357223033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-390ddb65f0f1ee48c54cb66ff0d1e93196a799ae5f83f28bd9e6d32849f7624f3</originalsourceid><addsrcrecordid>eNo9kEFvwjAMhaNpk8bYfgGXSjuXxUmTJkeEYGNCmgbsHIXUYUXQsLQ97N-vrIiTLfu9z9YjZAR0DED1y_t6M1mtx4wyOmZaCtD0hgwYCEhBcHFLBqC5TiGj2T15qOs9pZLlmg_I_LO1VVP637LaJc03JjPv0TVJ8MkKd2XdRNuUoUpmMYaYdM36dB6kGzyeQrSHZN7W3f6R3Hl7qPHpUofkaz7bTN_S5cfrYjpZpi6jqkm5pkWxlcJTD4iZciJzWym9pwWg5qClzbW2KLzinqltoVEWnKlM-1yyzPMhWfTcIti9OcXyaOOvCbY0_4MQd8bGpnQHNM5ZRwV0CFtkQjAFBTKprFbMgaW2Yz33rFMMPy3WjdmHNlbd-4ZxkTPGKeedivcqF0NdR_TXq0DNOXzTh2_O4ZtL-J1r1LtKRLw6lJZSSOB__siAYA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357223033</pqid></control><display><type>article</type><title>Quantifying the Effect of Registration Error on Spatio-Temporal Fusion</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tang, Yijie ; Wang, Qunming ; Zhang, Ka ; Atkinson, Peter M.</creator><creatorcontrib>Tang, Yijie ; Wang, Qunming ; Zhang, Ka ; Atkinson, Peter M.</creatorcontrib><description>It is challenging to acquire satellite sensor data with both fine spatial and fine temporal resolution, especially for monitoring at global scales. Among the widely used global monitoring satellite sensors, Landsat data have a coarse temporal resolution, but fine spatial resolution, while moderate resolution imaging spectroradiometer (MODIS) data have fine temporal resolution, but coarse spatial resolution. One solution to this problem is to blend the two types of data using spatio-temporal fusion, creating images with both fine temporal and fine spatial resolution. However, reliable geometric registration of images acquired by different sensors is a prerequisite of spatio-temporal fusion. Due to the potentially large differences between the spatial resolutions of the images to be fused, the geometric registration process always contains some degree of uncertainty. This article analyzes quantitatively the influence of geometric registration error on spatio-temporal fusion. The relationship between registration error and the accuracy of fusion was investigated under the influence of different temporal distances between images, different spatial patterns within the images and using different methods (i.e., spatial and temporal adaptive reflectance fusion model (STARFM), and Fit-FC; two typical spatio-temporal fusion methods). The results show that registration error has a significant impact on the accuracy of spatio-temporal fusion; as the registration error increased, the accuracy decreased monotonically. The effect of registration error in a heterogeneous region was greater than that in a homogeneous region. Moreover, the accuracy of fusion was not dependent on the temporal distance between images to be fused, but rather on their statistical correlation. Finally, the Fit-FC method was found to be more accurate than the STARFM method, under all registration error scenarios.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.2965190</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial satellites ; Data ; Earth ; Image acquisition ; Imaging techniques ; Landsat ; Landsat satellites ; Methods ; MODIS ; Monitoring ; Reflectance ; Registration ; registration error ; Remote sensing ; remote sensing data ; Resolution ; Satellites ; Sensors ; Spatial data ; Spatial discrimination ; Spatial resolution ; spatio-temporal fusion ; Spectroradiometers ; Statistical correlation ; Temporal resolution ; Uncertainty analysis</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.487-503</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-390ddb65f0f1ee48c54cb66ff0d1e93196a799ae5f83f28bd9e6d32849f7624f3</citedby><cites>FETCH-LOGICAL-c408t-390ddb65f0f1ee48c54cb66ff0d1e93196a799ae5f83f28bd9e6d32849f7624f3</cites><orcidid>0000-0003-0017-4476 ; 0000-0002-5188-0939 ; 0000-0002-5489-6880 ; 0000-0002-3277-580X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2095,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Tang, Yijie</creatorcontrib><creatorcontrib>Wang, Qunming</creatorcontrib><creatorcontrib>Zhang, Ka</creatorcontrib><creatorcontrib>Atkinson, Peter M.</creatorcontrib><title>Quantifying the Effect of Registration Error on Spatio-Temporal Fusion</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>It is challenging to acquire satellite sensor data with both fine spatial and fine temporal resolution, especially for monitoring at global scales. Among the widely used global monitoring satellite sensors, Landsat data have a coarse temporal resolution, but fine spatial resolution, while moderate resolution imaging spectroradiometer (MODIS) data have fine temporal resolution, but coarse spatial resolution. One solution to this problem is to blend the two types of data using spatio-temporal fusion, creating images with both fine temporal and fine spatial resolution. However, reliable geometric registration of images acquired by different sensors is a prerequisite of spatio-temporal fusion. Due to the potentially large differences between the spatial resolutions of the images to be fused, the geometric registration process always contains some degree of uncertainty. This article analyzes quantitatively the influence of geometric registration error on spatio-temporal fusion. The relationship between registration error and the accuracy of fusion was investigated under the influence of different temporal distances between images, different spatial patterns within the images and using different methods (i.e., spatial and temporal adaptive reflectance fusion model (STARFM), and Fit-FC; two typical spatio-temporal fusion methods). The results show that registration error has a significant impact on the accuracy of spatio-temporal fusion; as the registration error increased, the accuracy decreased monotonically. The effect of registration error in a heterogeneous region was greater than that in a homogeneous region. Moreover, the accuracy of fusion was not dependent on the temporal distance between images to be fused, but rather on their statistical correlation. Finally, the Fit-FC method was found to be more accurate than the STARFM method, under all registration error scenarios.</description><subject>Accuracy</subject><subject>Artificial satellites</subject><subject>Data</subject><subject>Earth</subject><subject>Image acquisition</subject><subject>Imaging techniques</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Methods</subject><subject>MODIS</subject><subject>Monitoring</subject><subject>Reflectance</subject><subject>Registration</subject><subject>registration error</subject><subject>Remote sensing</subject><subject>remote sensing data</subject><subject>Resolution</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Spatial data</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>spatio-temporal fusion</subject><subject>Spectroradiometers</subject><subject>Statistical correlation</subject><subject>Temporal resolution</subject><subject>Uncertainty analysis</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kEFvwjAMhaNpk8bYfgGXSjuXxUmTJkeEYGNCmgbsHIXUYUXQsLQ97N-vrIiTLfu9z9YjZAR0DED1y_t6M1mtx4wyOmZaCtD0hgwYCEhBcHFLBqC5TiGj2T15qOs9pZLlmg_I_LO1VVP637LaJc03JjPv0TVJ8MkKd2XdRNuUoUpmMYaYdM36dB6kGzyeQrSHZN7W3f6R3Hl7qPHpUofkaz7bTN_S5cfrYjpZpi6jqkm5pkWxlcJTD4iZciJzWym9pwWg5qClzbW2KLzinqltoVEWnKlM-1yyzPMhWfTcIti9OcXyaOOvCbY0_4MQd8bGpnQHNM5ZRwV0CFtkQjAFBTKprFbMgaW2Yz33rFMMPy3WjdmHNlbd-4ZxkTPGKeedivcqF0NdR_TXq0DNOXzTh2_O4ZtL-J1r1LtKRLw6lJZSSOB__siAYA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Tang, Yijie</creator><creator>Wang, Qunming</creator><creator>Zhang, Ka</creator><creator>Atkinson, Peter M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0017-4476</orcidid><orcidid>https://orcid.org/0000-0002-5188-0939</orcidid><orcidid>https://orcid.org/0000-0002-5489-6880</orcidid><orcidid>https://orcid.org/0000-0002-3277-580X</orcidid></search><sort><creationdate>2020</creationdate><title>Quantifying the Effect of Registration Error on Spatio-Temporal Fusion</title><author>Tang, Yijie ; Wang, Qunming ; Zhang, Ka ; Atkinson, Peter M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-390ddb65f0f1ee48c54cb66ff0d1e93196a799ae5f83f28bd9e6d32849f7624f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Artificial satellites</topic><topic>Data</topic><topic>Earth</topic><topic>Image acquisition</topic><topic>Imaging techniques</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Methods</topic><topic>MODIS</topic><topic>Monitoring</topic><topic>Reflectance</topic><topic>Registration</topic><topic>registration error</topic><topic>Remote sensing</topic><topic>remote sensing data</topic><topic>Resolution</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Spatial data</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>spatio-temporal fusion</topic><topic>Spectroradiometers</topic><topic>Statistical correlation</topic><topic>Temporal resolution</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yijie</creatorcontrib><creatorcontrib>Wang, Qunming</creatorcontrib><creatorcontrib>Zhang, Ka</creatorcontrib><creatorcontrib>Atkinson, Peter M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Yijie</au><au>Wang, Qunming</au><au>Zhang, Ka</au><au>Atkinson, Peter M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the Effect of Registration Error on Spatio-Temporal Fusion</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>487</spage><epage>503</epage><pages>487-503</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>It is challenging to acquire satellite sensor data with both fine spatial and fine temporal resolution, especially for monitoring at global scales. Among the widely used global monitoring satellite sensors, Landsat data have a coarse temporal resolution, but fine spatial resolution, while moderate resolution imaging spectroradiometer (MODIS) data have fine temporal resolution, but coarse spatial resolution. One solution to this problem is to blend the two types of data using spatio-temporal fusion, creating images with both fine temporal and fine spatial resolution. However, reliable geometric registration of images acquired by different sensors is a prerequisite of spatio-temporal fusion. Due to the potentially large differences between the spatial resolutions of the images to be fused, the geometric registration process always contains some degree of uncertainty. This article analyzes quantitatively the influence of geometric registration error on spatio-temporal fusion. The relationship between registration error and the accuracy of fusion was investigated under the influence of different temporal distances between images, different spatial patterns within the images and using different methods (i.e., spatial and temporal adaptive reflectance fusion model (STARFM), and Fit-FC; two typical spatio-temporal fusion methods). The results show that registration error has a significant impact on the accuracy of spatio-temporal fusion; as the registration error increased, the accuracy decreased monotonically. The effect of registration error in a heterogeneous region was greater than that in a homogeneous region. Moreover, the accuracy of fusion was not dependent on the temporal distance between images to be fused, but rather on their statistical correlation. Finally, the Fit-FC method was found to be more accurate than the STARFM method, under all registration error scenarios.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.2965190</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0017-4476</orcidid><orcidid>https://orcid.org/0000-0002-5188-0939</orcidid><orcidid>https://orcid.org/0000-0002-5489-6880</orcidid><orcidid>https://orcid.org/0000-0002-3277-580X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.487-503
issn 1939-1404
2151-1535
language eng
recordid cdi_crossref_primary_10_1109_JSTARS_2020_2965190
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Artificial satellites
Data
Earth
Image acquisition
Imaging techniques
Landsat
Landsat satellites
Methods
MODIS
Monitoring
Reflectance
Registration
registration error
Remote sensing
remote sensing data
Resolution
Satellites
Sensors
Spatial data
Spatial discrimination
Spatial resolution
spatio-temporal fusion
Spectroradiometers
Statistical correlation
Temporal resolution
Uncertainty analysis
title Quantifying the Effect of Registration Error on Spatio-Temporal Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20Effect%20of%20Registration%20Error%20on%20Spatio-Temporal%20Fusion&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Tang,%20Yijie&rft.date=2020&rft.volume=13&rft.spage=487&rft.epage=503&rft.pages=487-503&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.2965190&rft_dat=%3Cproquest_cross%3E2357223033%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357223033&rft_id=info:pmid/&rft_ieee_id=8966561&rft_doaj_id=oai_doaj_org_article_ccac051d9ead455281de268a982c1a0a&rfr_iscdi=true