Quantifying the Effect of Registration Error on Spatio-Temporal Fusion
It is challenging to acquire satellite sensor data with both fine spatial and fine temporal resolution, especially for monitoring at global scales. Among the widely used global monitoring satellite sensors, Landsat data have a coarse temporal resolution, but fine spatial resolution, while moderate r...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.487-503 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 503 |
---|---|
container_issue | |
container_start_page | 487 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 13 |
creator | Tang, Yijie Wang, Qunming Zhang, Ka Atkinson, Peter M. |
description | It is challenging to acquire satellite sensor data with both fine spatial and fine temporal resolution, especially for monitoring at global scales. Among the widely used global monitoring satellite sensors, Landsat data have a coarse temporal resolution, but fine spatial resolution, while moderate resolution imaging spectroradiometer (MODIS) data have fine temporal resolution, but coarse spatial resolution. One solution to this problem is to blend the two types of data using spatio-temporal fusion, creating images with both fine temporal and fine spatial resolution. However, reliable geometric registration of images acquired by different sensors is a prerequisite of spatio-temporal fusion. Due to the potentially large differences between the spatial resolutions of the images to be fused, the geometric registration process always contains some degree of uncertainty. This article analyzes quantitatively the influence of geometric registration error on spatio-temporal fusion. The relationship between registration error and the accuracy of fusion was investigated under the influence of different temporal distances between images, different spatial patterns within the images and using different methods (i.e., spatial and temporal adaptive reflectance fusion model (STARFM), and Fit-FC; two typical spatio-temporal fusion methods). The results show that registration error has a significant impact on the accuracy of spatio-temporal fusion; as the registration error increased, the accuracy decreased monotonically. The effect of registration error in a heterogeneous region was greater than that in a homogeneous region. Moreover, the accuracy of fusion was not dependent on the temporal distance between images to be fused, but rather on their statistical correlation. Finally, the Fit-FC method was found to be more accurate than the STARFM method, under all registration error scenarios. |
doi_str_mv | 10.1109/JSTARS.2020.2965190 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSTARS_2020_2965190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8966561</ieee_id><doaj_id>oai_doaj_org_article_ccac051d9ead455281de268a982c1a0a</doaj_id><sourcerecordid>2357223033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-390ddb65f0f1ee48c54cb66ff0d1e93196a799ae5f83f28bd9e6d32849f7624f3</originalsourceid><addsrcrecordid>eNo9kEFvwjAMhaNpk8bYfgGXSjuXxUmTJkeEYGNCmgbsHIXUYUXQsLQ97N-vrIiTLfu9z9YjZAR0DED1y_t6M1mtx4wyOmZaCtD0hgwYCEhBcHFLBqC5TiGj2T15qOs9pZLlmg_I_LO1VVP637LaJc03JjPv0TVJ8MkKd2XdRNuUoUpmMYaYdM36dB6kGzyeQrSHZN7W3f6R3Hl7qPHpUofkaz7bTN_S5cfrYjpZpi6jqkm5pkWxlcJTD4iZciJzWym9pwWg5qClzbW2KLzinqltoVEWnKlM-1yyzPMhWfTcIti9OcXyaOOvCbY0_4MQd8bGpnQHNM5ZRwV0CFtkQjAFBTKprFbMgaW2Yz33rFMMPy3WjdmHNlbd-4ZxkTPGKeedivcqF0NdR_TXq0DNOXzTh2_O4ZtL-J1r1LtKRLw6lJZSSOB__siAYA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357223033</pqid></control><display><type>article</type><title>Quantifying the Effect of Registration Error on Spatio-Temporal Fusion</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Tang, Yijie ; Wang, Qunming ; Zhang, Ka ; Atkinson, Peter M.</creator><creatorcontrib>Tang, Yijie ; Wang, Qunming ; Zhang, Ka ; Atkinson, Peter M.</creatorcontrib><description>It is challenging to acquire satellite sensor data with both fine spatial and fine temporal resolution, especially for monitoring at global scales. Among the widely used global monitoring satellite sensors, Landsat data have a coarse temporal resolution, but fine spatial resolution, while moderate resolution imaging spectroradiometer (MODIS) data have fine temporal resolution, but coarse spatial resolution. One solution to this problem is to blend the two types of data using spatio-temporal fusion, creating images with both fine temporal and fine spatial resolution. However, reliable geometric registration of images acquired by different sensors is a prerequisite of spatio-temporal fusion. Due to the potentially large differences between the spatial resolutions of the images to be fused, the geometric registration process always contains some degree of uncertainty. This article analyzes quantitatively the influence of geometric registration error on spatio-temporal fusion. The relationship between registration error and the accuracy of fusion was investigated under the influence of different temporal distances between images, different spatial patterns within the images and using different methods (i.e., spatial and temporal adaptive reflectance fusion model (STARFM), and Fit-FC; two typical spatio-temporal fusion methods). The results show that registration error has a significant impact on the accuracy of spatio-temporal fusion; as the registration error increased, the accuracy decreased monotonically. The effect of registration error in a heterogeneous region was greater than that in a homogeneous region. Moreover, the accuracy of fusion was not dependent on the temporal distance between images to be fused, but rather on their statistical correlation. Finally, the Fit-FC method was found to be more accurate than the STARFM method, under all registration error scenarios.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.2965190</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial satellites ; Data ; Earth ; Image acquisition ; Imaging techniques ; Landsat ; Landsat satellites ; Methods ; MODIS ; Monitoring ; Reflectance ; Registration ; registration error ; Remote sensing ; remote sensing data ; Resolution ; Satellites ; Sensors ; Spatial data ; Spatial discrimination ; Spatial resolution ; spatio-temporal fusion ; Spectroradiometers ; Statistical correlation ; Temporal resolution ; Uncertainty analysis</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.487-503</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-390ddb65f0f1ee48c54cb66ff0d1e93196a799ae5f83f28bd9e6d32849f7624f3</citedby><cites>FETCH-LOGICAL-c408t-390ddb65f0f1ee48c54cb66ff0d1e93196a799ae5f83f28bd9e6d32849f7624f3</cites><orcidid>0000-0003-0017-4476 ; 0000-0002-5188-0939 ; 0000-0002-5489-6880 ; 0000-0002-3277-580X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2095,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Tang, Yijie</creatorcontrib><creatorcontrib>Wang, Qunming</creatorcontrib><creatorcontrib>Zhang, Ka</creatorcontrib><creatorcontrib>Atkinson, Peter M.</creatorcontrib><title>Quantifying the Effect of Registration Error on Spatio-Temporal Fusion</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>It is challenging to acquire satellite sensor data with both fine spatial and fine temporal resolution, especially for monitoring at global scales. Among the widely used global monitoring satellite sensors, Landsat data have a coarse temporal resolution, but fine spatial resolution, while moderate resolution imaging spectroradiometer (MODIS) data have fine temporal resolution, but coarse spatial resolution. One solution to this problem is to blend the two types of data using spatio-temporal fusion, creating images with both fine temporal and fine spatial resolution. However, reliable geometric registration of images acquired by different sensors is a prerequisite of spatio-temporal fusion. Due to the potentially large differences between the spatial resolutions of the images to be fused, the geometric registration process always contains some degree of uncertainty. This article analyzes quantitatively the influence of geometric registration error on spatio-temporal fusion. The relationship between registration error and the accuracy of fusion was investigated under the influence of different temporal distances between images, different spatial patterns within the images and using different methods (i.e., spatial and temporal adaptive reflectance fusion model (STARFM), and Fit-FC; two typical spatio-temporal fusion methods). The results show that registration error has a significant impact on the accuracy of spatio-temporal fusion; as the registration error increased, the accuracy decreased monotonically. The effect of registration error in a heterogeneous region was greater than that in a homogeneous region. Moreover, the accuracy of fusion was not dependent on the temporal distance between images to be fused, but rather on their statistical correlation. Finally, the Fit-FC method was found to be more accurate than the STARFM method, under all registration error scenarios.</description><subject>Accuracy</subject><subject>Artificial satellites</subject><subject>Data</subject><subject>Earth</subject><subject>Image acquisition</subject><subject>Imaging techniques</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Methods</subject><subject>MODIS</subject><subject>Monitoring</subject><subject>Reflectance</subject><subject>Registration</subject><subject>registration error</subject><subject>Remote sensing</subject><subject>remote sensing data</subject><subject>Resolution</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Spatial data</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>spatio-temporal fusion</subject><subject>Spectroradiometers</subject><subject>Statistical correlation</subject><subject>Temporal resolution</subject><subject>Uncertainty analysis</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kEFvwjAMhaNpk8bYfgGXSjuXxUmTJkeEYGNCmgbsHIXUYUXQsLQ97N-vrIiTLfu9z9YjZAR0DED1y_t6M1mtx4wyOmZaCtD0hgwYCEhBcHFLBqC5TiGj2T15qOs9pZLlmg_I_LO1VVP637LaJc03JjPv0TVJ8MkKd2XdRNuUoUpmMYaYdM36dB6kGzyeQrSHZN7W3f6R3Hl7qPHpUofkaz7bTN_S5cfrYjpZpi6jqkm5pkWxlcJTD4iZciJzWym9pwWg5qClzbW2KLzinqltoVEWnKlM-1yyzPMhWfTcIti9OcXyaOOvCbY0_4MQd8bGpnQHNM5ZRwV0CFtkQjAFBTKprFbMgaW2Yz33rFMMPy3WjdmHNlbd-4ZxkTPGKeedivcqF0NdR_TXq0DNOXzTh2_O4ZtL-J1r1LtKRLw6lJZSSOB__siAYA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Tang, Yijie</creator><creator>Wang, Qunming</creator><creator>Zhang, Ka</creator><creator>Atkinson, Peter M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0017-4476</orcidid><orcidid>https://orcid.org/0000-0002-5188-0939</orcidid><orcidid>https://orcid.org/0000-0002-5489-6880</orcidid><orcidid>https://orcid.org/0000-0002-3277-580X</orcidid></search><sort><creationdate>2020</creationdate><title>Quantifying the Effect of Registration Error on Spatio-Temporal Fusion</title><author>Tang, Yijie ; Wang, Qunming ; Zhang, Ka ; Atkinson, Peter M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-390ddb65f0f1ee48c54cb66ff0d1e93196a799ae5f83f28bd9e6d32849f7624f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Artificial satellites</topic><topic>Data</topic><topic>Earth</topic><topic>Image acquisition</topic><topic>Imaging techniques</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Methods</topic><topic>MODIS</topic><topic>Monitoring</topic><topic>Reflectance</topic><topic>Registration</topic><topic>registration error</topic><topic>Remote sensing</topic><topic>remote sensing data</topic><topic>Resolution</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Spatial data</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>spatio-temporal fusion</topic><topic>Spectroradiometers</topic><topic>Statistical correlation</topic><topic>Temporal resolution</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yijie</creatorcontrib><creatorcontrib>Wang, Qunming</creatorcontrib><creatorcontrib>Zhang, Ka</creatorcontrib><creatorcontrib>Atkinson, Peter M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Yijie</au><au>Wang, Qunming</au><au>Zhang, Ka</au><au>Atkinson, Peter M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the Effect of Registration Error on Spatio-Temporal Fusion</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>487</spage><epage>503</epage><pages>487-503</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>It is challenging to acquire satellite sensor data with both fine spatial and fine temporal resolution, especially for monitoring at global scales. Among the widely used global monitoring satellite sensors, Landsat data have a coarse temporal resolution, but fine spatial resolution, while moderate resolution imaging spectroradiometer (MODIS) data have fine temporal resolution, but coarse spatial resolution. One solution to this problem is to blend the two types of data using spatio-temporal fusion, creating images with both fine temporal and fine spatial resolution. However, reliable geometric registration of images acquired by different sensors is a prerequisite of spatio-temporal fusion. Due to the potentially large differences between the spatial resolutions of the images to be fused, the geometric registration process always contains some degree of uncertainty. This article analyzes quantitatively the influence of geometric registration error on spatio-temporal fusion. The relationship between registration error and the accuracy of fusion was investigated under the influence of different temporal distances between images, different spatial patterns within the images and using different methods (i.e., spatial and temporal adaptive reflectance fusion model (STARFM), and Fit-FC; two typical spatio-temporal fusion methods). The results show that registration error has a significant impact on the accuracy of spatio-temporal fusion; as the registration error increased, the accuracy decreased monotonically. The effect of registration error in a heterogeneous region was greater than that in a homogeneous region. Moreover, the accuracy of fusion was not dependent on the temporal distance between images to be fused, but rather on their statistical correlation. Finally, the Fit-FC method was found to be more accurate than the STARFM method, under all registration error scenarios.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.2965190</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0017-4476</orcidid><orcidid>https://orcid.org/0000-0002-5188-0939</orcidid><orcidid>https://orcid.org/0000-0002-5489-6880</orcidid><orcidid>https://orcid.org/0000-0002-3277-580X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.487-503 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSTARS_2020_2965190 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Artificial satellites Data Earth Image acquisition Imaging techniques Landsat Landsat satellites Methods MODIS Monitoring Reflectance Registration registration error Remote sensing remote sensing data Resolution Satellites Sensors Spatial data Spatial discrimination Spatial resolution spatio-temporal fusion Spectroradiometers Statistical correlation Temporal resolution Uncertainty analysis |
title | Quantifying the Effect of Registration Error on Spatio-Temporal Fusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20Effect%20of%20Registration%20Error%20on%20Spatio-Temporal%20Fusion&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Tang,%20Yijie&rft.date=2020&rft.volume=13&rft.spage=487&rft.epage=503&rft.pages=487-503&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.2965190&rft_dat=%3Cproquest_cross%3E2357223033%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357223033&rft_id=info:pmid/&rft_ieee_id=8966561&rft_doaj_id=oai_doaj_org_article_ccac051d9ead455281de268a982c1a0a&rfr_iscdi=true |