Enhancing Efficiency in Piezoelectric Energy Harvesting: Collaborative-Flip Synchronized Switch Harvesting on Capacitors Rectifier and Multioutput DC-DC Converters Utilizing Shared Capacitors

This article proposes a novel collaborative-flip synchronized switch harvesting on capacitors (CF-SSHCs) rectifier and multioutput synchronous dc-dc converters with shared capacitors. Compared to the traditional SSHC, our CF-SSHC rectifier can increase the number of flipping phases, potentially enha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2024-09, p.1-12
Hauptverfasser: Wang, Jing, Yang, Yi, Li, Zhen, Du, Sijun, Yue, Xinling, Liu, Xun, Han, Jun, Zeng, Xiaoyang, Chen, Zhiyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE journal of solid-state circuits
container_volume
creator Wang, Jing
Yang, Yi
Li, Zhen
Du, Sijun
Yue, Xinling
Liu, Xun
Han, Jun
Zeng, Xiaoyang
Chen, Zhiyuan
description This article proposes a novel collaborative-flip synchronized switch harvesting on capacitors (CF-SSHCs) rectifier and multioutput synchronous dc-dc converters with shared capacitors. Compared to the traditional SSHC, our CF-SSHC rectifier can increase the number of flipping phases, potentially enhancing the flipping efficiency and output power under specific conditions where C_{\text{FLY}} is close to C_P . The synchronous dc-dc converters reuse the flying capacitors to achieve a high maximum output power improving rate (MOPIR) over a limited input power range and provide multiple outputs. This work achieves an advanced number of flipping phases in capacitor-based rectifier interface technology and explores multiple-input multiple-output configurations, evaluating the system's performance under periodic and shock conditions for the first time. The system's adaptability to various piezoelectric transducer (PT) array configurations is validated, highlighting its potential for Internet of Things (IoT) networks. The design is fabricated in standard 0.18- \mu m CMOS. Measurement results demonstrate that the voltage flipping efficiency of up to 83% is achieved. Compared with full-bridge rectifier (FBR), the MOPIR can be increased to 5.06 \times and 4.78 \times under off-resonance and on-resonance excitation, respectively. It can also achieve a 2.14 \times power enhancement under shock excitation. Additionally, when the input power P_{\text{IN\_FBR}} is in the range of 1.42-28.4 \mu W, the MOPIR of the proposed system is always greater than 4.
doi_str_mv 10.1109/JSSC.2024.3452113
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2024_3452113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10685547</ieee_id><sourcerecordid>10_1109_JSSC_2024_3452113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-16a86d8b0196829aa9c9beb7e2b185e07fe43730c4647dbef342a935c165f2fb3</originalsourceid><addsrcrecordid>eNpNkd9KwzAUh4MoOKcPIHiRF-hMmrRNvZO6-QdFsQ68K2l2sh2p6UizyfZyvpodDvTqcOD3fTcfIeecjThn-eVDWRajmMVyJGQScy4OyIAniYp4Jt4PyYAxrqI8ZuyYnHTdR_9KqfiAfI_dQjuDbk7H1qJBcGZD0dEXhG0LDZjg0dCxAz_f0Dvt19CFfn1Fi7ZpdN16HXAN0aTBJS03zix863ALM1p-YTCLfwhtHS30UhsMre_oa69Gi-CpdjP6tGoCtquwXAV6U0Q3Re93a_AB-uk0YIPbnaJcaN-7_zSn5MjqpoOz_R2S6WT8VtxFj8-398X1Y2S4VCHiqVbpTNWM56mKc61zk9dQZxDXXCXAMgtSZIIZmcpsVoMVMta5SAxPExvbWgwJ__Ua33adB1stPX5qv6k4q3YFql2Baleg2hfomYtfBgHg3z5VSSIz8QPbqYfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing Efficiency in Piezoelectric Energy Harvesting: Collaborative-Flip Synchronized Switch Harvesting on Capacitors Rectifier and Multioutput DC-DC Converters Utilizing Shared Capacitors</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jing ; Yang, Yi ; Li, Zhen ; Du, Sijun ; Yue, Xinling ; Liu, Xun ; Han, Jun ; Zeng, Xiaoyang ; Chen, Zhiyuan</creator><creatorcontrib>Wang, Jing ; Yang, Yi ; Li, Zhen ; Du, Sijun ; Yue, Xinling ; Liu, Xun ; Han, Jun ; Zeng, Xiaoyang ; Chen, Zhiyuan</creatorcontrib><description><![CDATA[This article proposes a novel collaborative-flip synchronized switch harvesting on capacitors (CF-SSHCs) rectifier and multioutput synchronous dc-dc converters with shared capacitors. Compared to the traditional SSHC, our CF-SSHC rectifier can increase the number of flipping phases, potentially enhancing the flipping efficiency and output power under specific conditions where <inline-formula> <tex-math notation="LaTeX">C_{\text{FLY}}</tex-math> </inline-formula> is close to <inline-formula> <tex-math notation="LaTeX">C_P</tex-math> </inline-formula>. The synchronous dc-dc converters reuse the flying capacitors to achieve a high maximum output power improving rate (MOPIR) over a limited input power range and provide multiple outputs. This work achieves an advanced number of flipping phases in capacitor-based rectifier interface technology and explores multiple-input multiple-output configurations, evaluating the system's performance under periodic and shock conditions for the first time. The system's adaptability to various piezoelectric transducer (PT) array configurations is validated, highlighting its potential for Internet of Things (IoT) networks. The design is fabricated in standard 0.18-<inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m CMOS. Measurement results demonstrate that the voltage flipping efficiency of up to 83% is achieved. Compared with full-bridge rectifier (FBR), the MOPIR can be increased to 5.06<inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> and 4.78<inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> under off-resonance and on-resonance excitation, respectively. It can also achieve a 2.14<inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> power enhancement under shock excitation. Additionally, when the input power <inline-formula> <tex-math notation="LaTeX">P_{\text{IN\_FBR}}</tex-math> </inline-formula> is in the range of 1.42-28.4 <inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>W, the MOPIR of the proposed system is always greater than 4.]]></description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2024.3452113</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>IEEE</publisher><subject>Capacitors ; Energy harvesting ; Maximum power point tracking (MPPT) ; multiinput ; multioutput ; piezoelectric ; piezoelectric energy harvesting (PEH) ; Power generation ; Rectifiers ; shared capacitors ; shock excitation ; Switches ; Synchronization ; synchronized switch harvesting on capacitors (SSHCs) ; Voltage</subject><ispartof>IEEE journal of solid-state circuits, 2024-09, p.1-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>zhenli19@fudan.edu.cn ; liuxun@cuhk.edu.cn ; junhan@fudan.edu.cn ; sijun.du@tudelft.nl ; xyzeng@fudan.edu.cn ; chen_zy@fudan.edu.cn ; x.yue-1@tudelft.nl</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10685547$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10685547$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Du, Sijun</creatorcontrib><creatorcontrib>Yue, Xinling</creatorcontrib><creatorcontrib>Liu, Xun</creatorcontrib><creatorcontrib>Han, Jun</creatorcontrib><creatorcontrib>Zeng, Xiaoyang</creatorcontrib><creatorcontrib>Chen, Zhiyuan</creatorcontrib><title>Enhancing Efficiency in Piezoelectric Energy Harvesting: Collaborative-Flip Synchronized Switch Harvesting on Capacitors Rectifier and Multioutput DC-DC Converters Utilizing Shared Capacitors</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[This article proposes a novel collaborative-flip synchronized switch harvesting on capacitors (CF-SSHCs) rectifier and multioutput synchronous dc-dc converters with shared capacitors. Compared to the traditional SSHC, our CF-SSHC rectifier can increase the number of flipping phases, potentially enhancing the flipping efficiency and output power under specific conditions where <inline-formula> <tex-math notation="LaTeX">C_{\text{FLY}}</tex-math> </inline-formula> is close to <inline-formula> <tex-math notation="LaTeX">C_P</tex-math> </inline-formula>. The synchronous dc-dc converters reuse the flying capacitors to achieve a high maximum output power improving rate (MOPIR) over a limited input power range and provide multiple outputs. This work achieves an advanced number of flipping phases in capacitor-based rectifier interface technology and explores multiple-input multiple-output configurations, evaluating the system's performance under periodic and shock conditions for the first time. The system's adaptability to various piezoelectric transducer (PT) array configurations is validated, highlighting its potential for Internet of Things (IoT) networks. The design is fabricated in standard 0.18-<inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m CMOS. Measurement results demonstrate that the voltage flipping efficiency of up to 83% is achieved. Compared with full-bridge rectifier (FBR), the MOPIR can be increased to 5.06<inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> and 4.78<inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> under off-resonance and on-resonance excitation, respectively. It can also achieve a 2.14<inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> power enhancement under shock excitation. Additionally, when the input power <inline-formula> <tex-math notation="LaTeX">P_{\text{IN\_FBR}}</tex-math> </inline-formula> is in the range of 1.42-28.4 <inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>W, the MOPIR of the proposed system is always greater than 4.]]></description><subject>Capacitors</subject><subject>Energy harvesting</subject><subject>Maximum power point tracking (MPPT)</subject><subject>multiinput</subject><subject>multioutput</subject><subject>piezoelectric</subject><subject>piezoelectric energy harvesting (PEH)</subject><subject>Power generation</subject><subject>Rectifiers</subject><subject>shared capacitors</subject><subject>shock excitation</subject><subject>Switches</subject><subject>Synchronization</subject><subject>synchronized switch harvesting on capacitors (SSHCs)</subject><subject>Voltage</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkd9KwzAUh4MoOKcPIHiRF-hMmrRNvZO6-QdFsQ68K2l2sh2p6UizyfZyvpodDvTqcOD3fTcfIeecjThn-eVDWRajmMVyJGQScy4OyIAniYp4Jt4PyYAxrqI8ZuyYnHTdR_9KqfiAfI_dQjuDbk7H1qJBcGZD0dEXhG0LDZjg0dCxAz_f0Dvt19CFfn1Fi7ZpdN16HXAN0aTBJS03zix863ALM1p-YTCLfwhtHS30UhsMre_oa69Gi-CpdjP6tGoCtquwXAV6U0Q3Re93a_AB-uk0YIPbnaJcaN-7_zSn5MjqpoOz_R2S6WT8VtxFj8-398X1Y2S4VCHiqVbpTNWM56mKc61zk9dQZxDXXCXAMgtSZIIZmcpsVoMVMta5SAxPExvbWgwJ__Ua33adB1stPX5qv6k4q3YFql2Baleg2hfomYtfBgHg3z5VSSIz8QPbqYfg</recordid><startdate>20240924</startdate><enddate>20240924</enddate><creator>Wang, Jing</creator><creator>Yang, Yi</creator><creator>Li, Zhen</creator><creator>Du, Sijun</creator><creator>Yue, Xinling</creator><creator>Liu, Xun</creator><creator>Han, Jun</creator><creator>Zeng, Xiaoyang</creator><creator>Chen, Zhiyuan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/zhenli19@fudan.edu.cn</orcidid><orcidid>https://orcid.org/liuxun@cuhk.edu.cn</orcidid><orcidid>https://orcid.org/junhan@fudan.edu.cn</orcidid><orcidid>https://orcid.org/sijun.du@tudelft.nl</orcidid><orcidid>https://orcid.org/xyzeng@fudan.edu.cn</orcidid><orcidid>https://orcid.org/chen_zy@fudan.edu.cn</orcidid><orcidid>https://orcid.org/x.yue-1@tudelft.nl</orcidid></search><sort><creationdate>20240924</creationdate><title>Enhancing Efficiency in Piezoelectric Energy Harvesting: Collaborative-Flip Synchronized Switch Harvesting on Capacitors Rectifier and Multioutput DC-DC Converters Utilizing Shared Capacitors</title><author>Wang, Jing ; Yang, Yi ; Li, Zhen ; Du, Sijun ; Yue, Xinling ; Liu, Xun ; Han, Jun ; Zeng, Xiaoyang ; Chen, Zhiyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-16a86d8b0196829aa9c9beb7e2b185e07fe43730c4647dbef342a935c165f2fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Capacitors</topic><topic>Energy harvesting</topic><topic>Maximum power point tracking (MPPT)</topic><topic>multiinput</topic><topic>multioutput</topic><topic>piezoelectric</topic><topic>piezoelectric energy harvesting (PEH)</topic><topic>Power generation</topic><topic>Rectifiers</topic><topic>shared capacitors</topic><topic>shock excitation</topic><topic>Switches</topic><topic>Synchronization</topic><topic>synchronized switch harvesting on capacitors (SSHCs)</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Du, Sijun</creatorcontrib><creatorcontrib>Yue, Xinling</creatorcontrib><creatorcontrib>Liu, Xun</creatorcontrib><creatorcontrib>Han, Jun</creatorcontrib><creatorcontrib>Zeng, Xiaoyang</creatorcontrib><creatorcontrib>Chen, Zhiyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Jing</au><au>Yang, Yi</au><au>Li, Zhen</au><au>Du, Sijun</au><au>Yue, Xinling</au><au>Liu, Xun</au><au>Han, Jun</au><au>Zeng, Xiaoyang</au><au>Chen, Zhiyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Efficiency in Piezoelectric Energy Harvesting: Collaborative-Flip Synchronized Switch Harvesting on Capacitors Rectifier and Multioutput DC-DC Converters Utilizing Shared Capacitors</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2024-09-24</date><risdate>2024</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract><![CDATA[This article proposes a novel collaborative-flip synchronized switch harvesting on capacitors (CF-SSHCs) rectifier and multioutput synchronous dc-dc converters with shared capacitors. Compared to the traditional SSHC, our CF-SSHC rectifier can increase the number of flipping phases, potentially enhancing the flipping efficiency and output power under specific conditions where <inline-formula> <tex-math notation="LaTeX">C_{\text{FLY}}</tex-math> </inline-formula> is close to <inline-formula> <tex-math notation="LaTeX">C_P</tex-math> </inline-formula>. The synchronous dc-dc converters reuse the flying capacitors to achieve a high maximum output power improving rate (MOPIR) over a limited input power range and provide multiple outputs. This work achieves an advanced number of flipping phases in capacitor-based rectifier interface technology and explores multiple-input multiple-output configurations, evaluating the system's performance under periodic and shock conditions for the first time. The system's adaptability to various piezoelectric transducer (PT) array configurations is validated, highlighting its potential for Internet of Things (IoT) networks. The design is fabricated in standard 0.18-<inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>m CMOS. Measurement results demonstrate that the voltage flipping efficiency of up to 83% is achieved. Compared with full-bridge rectifier (FBR), the MOPIR can be increased to 5.06<inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> and 4.78<inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> under off-resonance and on-resonance excitation, respectively. It can also achieve a 2.14<inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> power enhancement under shock excitation. Additionally, when the input power <inline-formula> <tex-math notation="LaTeX">P_{\text{IN\_FBR}}</tex-math> </inline-formula> is in the range of 1.42-28.4 <inline-formula> <tex-math notation="LaTeX">\mu</tex-math> </inline-formula>W, the MOPIR of the proposed system is always greater than 4.]]></abstract><pub>IEEE</pub><doi>10.1109/JSSC.2024.3452113</doi><tpages>12</tpages><orcidid>https://orcid.org/zhenli19@fudan.edu.cn</orcidid><orcidid>https://orcid.org/liuxun@cuhk.edu.cn</orcidid><orcidid>https://orcid.org/junhan@fudan.edu.cn</orcidid><orcidid>https://orcid.org/sijun.du@tudelft.nl</orcidid><orcidid>https://orcid.org/xyzeng@fudan.edu.cn</orcidid><orcidid>https://orcid.org/chen_zy@fudan.edu.cn</orcidid><orcidid>https://orcid.org/x.yue-1@tudelft.nl</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2024-09, p.1-12
issn 0018-9200
1558-173X
language eng
recordid cdi_crossref_primary_10_1109_JSSC_2024_3452113
source IEEE Electronic Library (IEL)
subjects Capacitors
Energy harvesting
Maximum power point tracking (MPPT)
multiinput
multioutput
piezoelectric
piezoelectric energy harvesting (PEH)
Power generation
Rectifiers
shared capacitors
shock excitation
Switches
Synchronization
synchronized switch harvesting on capacitors (SSHCs)
Voltage
title Enhancing Efficiency in Piezoelectric Energy Harvesting: Collaborative-Flip Synchronized Switch Harvesting on Capacitors Rectifier and Multioutput DC-DC Converters Utilizing Shared Capacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T07%3A05%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Efficiency%20in%20Piezoelectric%20Energy%20Harvesting:%20Collaborative-Flip%20Synchronized%20Switch%20Harvesting%20on%20Capacitors%20Rectifier%20and%20Multioutput%20DC-DC%20Converters%20Utilizing%20Shared%20Capacitors&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Wang,%20Jing&rft.date=2024-09-24&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2024.3452113&rft_dat=%3Ccrossref_RIE%3E10_1109_JSSC_2024_3452113%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10685547&rfr_iscdi=true