Dual-Mode Operations of Self-Rectifying Ferroelectric Tunnel Junction Crosspoint Array for High-Density Integration of IoT Devices
This study proposes a self-rectifying ferroelectric tunnel junction (SR-FTJ) crosspoint array to satisfy the stringent size requirements of the Internet-of-Things devices. Each cell in the SR-FTJ crosspoint array consists of two SR-FTJs stacked vertically, resulting in ultrahigh density. The SR-FTJ...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2023-07, Vol.58 (7), p.1-11 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | IEEE journal of solid-state circuits |
container_volume | 58 |
creator | Lim, Sehee Goh, Youngin Lee, Young Kyu Ko, Dong Han Hwang, Junghyeon Jeong, Yeongseok Shin, Hunbeom Jeon, Sanghun Jung, Seong-Ook |
description | This study proposes a self-rectifying ferroelectric tunnel junction (SR-FTJ) crosspoint array to satisfy the stringent size requirements of the Internet-of-Things devices. Each cell in the SR-FTJ crosspoint array consists of two SR-FTJs stacked vertically, resulting in ultrahigh density. The SR-FTJ crosspoint array can operate as: 1) ternary content-addressable memory (TCAM) or 2) binary content addressable memory (BCAM) or physically unclonable function (PUF) in the dual-mode operation. In the dual-mode operation, the amount of the current flowing through the SR-FTJs remains the same, resulting in a stable PUF response regardless of the BCAM data. The dual-mode operation of the SR-FTJ crosspoint array is experimentally verified by 4-in wafer-level demonstrations. HSPICE simulation results using the industrial-compatible 180-nm technology with the SR-FTJ model reflecting measured characteristics show that the SR-FTJ crosspoint array achieves the lowest search energy (2.05 fJ/search/bit) and the highest randomness (Hamming weight of 0.5000) among the previous content addressable memories (CAMs) and PUFs. In addition, the SR-FTJ crosspoint array reduces area by > 84.2% compared to the previous structures that implement individual CAM and PUF. |
doi_str_mv | 10.1109/JSSC.2023.3265667 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2023_3265667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10103903</ieee_id><sourcerecordid>2830414277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-cf2ce33d55ade3e889a0a597eaa7d91864ef85578e49cfb919600a905a96f59e3</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMoWKs_QPAQ8Lw12Wx2k2NprW2pFGwFb0tMJzVlTWqyK-zVX-4u9eBpmOG9N7wPoVtKRpQS-bDcbCajlKRsxNKc53lxhgaUc5HQgr2dowEhVCQyJeQSXcV46NYsE3SAfqaNqpJnvwO8PkJQtfUuYm_wBiqTvICurWmt2-MZhOCh6g7BarxtnIMKLxuneweeBB_j0VtX43EIqsXGBzy3-49kCi7ausULV8P-lN_HL_wWT-HbaojX6MKoKsLN3xyi19njdjJPVuunxWS8SnQqszrRJtXA2I5ztQMGQkhFFJcFKFXsJBV5BkZwXgjIpDbvksqcECUJVzI3XAIbovtT7jH4rwZiXR58E1z3skwFIxnN0qLoVPSk0n2lAKY8BvupQltSUvaoyx512aMu_1B3nruTxwLAPz0lTBLGfgEntnxX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2830414277</pqid></control><display><type>article</type><title>Dual-Mode Operations of Self-Rectifying Ferroelectric Tunnel Junction Crosspoint Array for High-Density Integration of IoT Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Lim, Sehee ; Goh, Youngin ; Lee, Young Kyu ; Ko, Dong Han ; Hwang, Junghyeon ; Jeong, Yeongseok ; Shin, Hunbeom ; Jeon, Sanghun ; Jung, Seong-Ook</creator><creatorcontrib>Lim, Sehee ; Goh, Youngin ; Lee, Young Kyu ; Ko, Dong Han ; Hwang, Junghyeon ; Jeong, Yeongseok ; Shin, Hunbeom ; Jeon, Sanghun ; Jung, Seong-Ook</creatorcontrib><description>This study proposes a self-rectifying ferroelectric tunnel junction (SR-FTJ) crosspoint array to satisfy the stringent size requirements of the Internet-of-Things devices. Each cell in the SR-FTJ crosspoint array consists of two SR-FTJs stacked vertically, resulting in ultrahigh density. The SR-FTJ crosspoint array can operate as: 1) ternary content-addressable memory (TCAM) or 2) binary content addressable memory (BCAM) or physically unclonable function (PUF) in the dual-mode operation. In the dual-mode operation, the amount of the current flowing through the SR-FTJs remains the same, resulting in a stable PUF response regardless of the BCAM data. The dual-mode operation of the SR-FTJ crosspoint array is experimentally verified by 4-in wafer-level demonstrations. HSPICE simulation results using the industrial-compatible 180-nm technology with the SR-FTJ model reflecting measured characteristics show that the SR-FTJ crosspoint array achieves the lowest search energy (2.05 fJ/search/bit) and the highest randomness (Hamming weight of 0.5000) among the previous content addressable memories (CAMs) and PUFs. In addition, the SR-FTJ crosspoint array reduces area by <inline-formula> <tex-math notation="LaTeX">></tex-math> </inline-formula>84.2% compared to the previous structures that implement individual CAM and PUF.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2023.3265667</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Area efficiency ; Arrays ; Associative memory ; content addressable memory (CAM) ; crosspoint array ; Density ; dual-mode operation ; Electrodes ; Ferroelectric materials ; Ferroelectricity ; Hysteresis ; Internet of Things ; Internet of Things (IoT) ; Junctions ; leakage current ; Optical switches ; physically unclonable function (PUF) ; self-rectifying ferroelectric tunnel junction (SR-FTJ) ; Tantalum ; Tunnel junctions</subject><ispartof>IEEE journal of solid-state circuits, 2023-07, Vol.58 (7), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-cf2ce33d55ade3e889a0a597eaa7d91864ef85578e49cfb919600a905a96f59e3</citedby><cites>FETCH-LOGICAL-c294t-cf2ce33d55ade3e889a0a597eaa7d91864ef85578e49cfb919600a905a96f59e3</cites><orcidid>0000-0001-5751-7973 ; 0000-0003-0757-2581 ; 0000-0003-4772-2695 ; 0000-0002-2026-2097 ; 0000-0002-9028-4603 ; 0000-0002-7995-6640 ; 0000-0002-4222-1587 ; 0000-0003-0317-8210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10103903$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10103903$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lim, Sehee</creatorcontrib><creatorcontrib>Goh, Youngin</creatorcontrib><creatorcontrib>Lee, Young Kyu</creatorcontrib><creatorcontrib>Ko, Dong Han</creatorcontrib><creatorcontrib>Hwang, Junghyeon</creatorcontrib><creatorcontrib>Jeong, Yeongseok</creatorcontrib><creatorcontrib>Shin, Hunbeom</creatorcontrib><creatorcontrib>Jeon, Sanghun</creatorcontrib><creatorcontrib>Jung, Seong-Ook</creatorcontrib><title>Dual-Mode Operations of Self-Rectifying Ferroelectric Tunnel Junction Crosspoint Array for High-Density Integration of IoT Devices</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This study proposes a self-rectifying ferroelectric tunnel junction (SR-FTJ) crosspoint array to satisfy the stringent size requirements of the Internet-of-Things devices. Each cell in the SR-FTJ crosspoint array consists of two SR-FTJs stacked vertically, resulting in ultrahigh density. The SR-FTJ crosspoint array can operate as: 1) ternary content-addressable memory (TCAM) or 2) binary content addressable memory (BCAM) or physically unclonable function (PUF) in the dual-mode operation. In the dual-mode operation, the amount of the current flowing through the SR-FTJs remains the same, resulting in a stable PUF response regardless of the BCAM data. The dual-mode operation of the SR-FTJ crosspoint array is experimentally verified by 4-in wafer-level demonstrations. HSPICE simulation results using the industrial-compatible 180-nm technology with the SR-FTJ model reflecting measured characteristics show that the SR-FTJ crosspoint array achieves the lowest search energy (2.05 fJ/search/bit) and the highest randomness (Hamming weight of 0.5000) among the previous content addressable memories (CAMs) and PUFs. In addition, the SR-FTJ crosspoint array reduces area by <inline-formula> <tex-math notation="LaTeX">></tex-math> </inline-formula>84.2% compared to the previous structures that implement individual CAM and PUF.</description><subject>Area efficiency</subject><subject>Arrays</subject><subject>Associative memory</subject><subject>content addressable memory (CAM)</subject><subject>crosspoint array</subject><subject>Density</subject><subject>dual-mode operation</subject><subject>Electrodes</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Hysteresis</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>Junctions</subject><subject>leakage current</subject><subject>Optical switches</subject><subject>physically unclonable function (PUF)</subject><subject>self-rectifying ferroelectric tunnel junction (SR-FTJ)</subject><subject>Tantalum</subject><subject>Tunnel junctions</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLAzEQhYMoWKs_QPAQ8Lw12Wx2k2NprW2pFGwFb0tMJzVlTWqyK-zVX-4u9eBpmOG9N7wPoVtKRpQS-bDcbCajlKRsxNKc53lxhgaUc5HQgr2dowEhVCQyJeQSXcV46NYsE3SAfqaNqpJnvwO8PkJQtfUuYm_wBiqTvICurWmt2-MZhOCh6g7BarxtnIMKLxuneweeBB_j0VtX43EIqsXGBzy3-49kCi7ausULV8P-lN_HL_wWT-HbaojX6MKoKsLN3xyi19njdjJPVuunxWS8SnQqszrRJtXA2I5ztQMGQkhFFJcFKFXsJBV5BkZwXgjIpDbvksqcECUJVzI3XAIbovtT7jH4rwZiXR58E1z3skwFIxnN0qLoVPSk0n2lAKY8BvupQltSUvaoyx512aMu_1B3nruTxwLAPz0lTBLGfgEntnxX</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Lim, Sehee</creator><creator>Goh, Youngin</creator><creator>Lee, Young Kyu</creator><creator>Ko, Dong Han</creator><creator>Hwang, Junghyeon</creator><creator>Jeong, Yeongseok</creator><creator>Shin, Hunbeom</creator><creator>Jeon, Sanghun</creator><creator>Jung, Seong-Ook</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5751-7973</orcidid><orcidid>https://orcid.org/0000-0003-0757-2581</orcidid><orcidid>https://orcid.org/0000-0003-4772-2695</orcidid><orcidid>https://orcid.org/0000-0002-2026-2097</orcidid><orcidid>https://orcid.org/0000-0002-9028-4603</orcidid><orcidid>https://orcid.org/0000-0002-7995-6640</orcidid><orcidid>https://orcid.org/0000-0002-4222-1587</orcidid><orcidid>https://orcid.org/0000-0003-0317-8210</orcidid></search><sort><creationdate>20230701</creationdate><title>Dual-Mode Operations of Self-Rectifying Ferroelectric Tunnel Junction Crosspoint Array for High-Density Integration of IoT Devices</title><author>Lim, Sehee ; Goh, Youngin ; Lee, Young Kyu ; Ko, Dong Han ; Hwang, Junghyeon ; Jeong, Yeongseok ; Shin, Hunbeom ; Jeon, Sanghun ; Jung, Seong-Ook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-cf2ce33d55ade3e889a0a597eaa7d91864ef85578e49cfb919600a905a96f59e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Area efficiency</topic><topic>Arrays</topic><topic>Associative memory</topic><topic>content addressable memory (CAM)</topic><topic>crosspoint array</topic><topic>Density</topic><topic>dual-mode operation</topic><topic>Electrodes</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Hysteresis</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>Junctions</topic><topic>leakage current</topic><topic>Optical switches</topic><topic>physically unclonable function (PUF)</topic><topic>self-rectifying ferroelectric tunnel junction (SR-FTJ)</topic><topic>Tantalum</topic><topic>Tunnel junctions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Sehee</creatorcontrib><creatorcontrib>Goh, Youngin</creatorcontrib><creatorcontrib>Lee, Young Kyu</creatorcontrib><creatorcontrib>Ko, Dong Han</creatorcontrib><creatorcontrib>Hwang, Junghyeon</creatorcontrib><creatorcontrib>Jeong, Yeongseok</creatorcontrib><creatorcontrib>Shin, Hunbeom</creatorcontrib><creatorcontrib>Jeon, Sanghun</creatorcontrib><creatorcontrib>Jung, Seong-Ook</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lim, Sehee</au><au>Goh, Youngin</au><au>Lee, Young Kyu</au><au>Ko, Dong Han</au><au>Hwang, Junghyeon</au><au>Jeong, Yeongseok</au><au>Shin, Hunbeom</au><au>Jeon, Sanghun</au><au>Jung, Seong-Ook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-Mode Operations of Self-Rectifying Ferroelectric Tunnel Junction Crosspoint Array for High-Density Integration of IoT Devices</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>58</volume><issue>7</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This study proposes a self-rectifying ferroelectric tunnel junction (SR-FTJ) crosspoint array to satisfy the stringent size requirements of the Internet-of-Things devices. Each cell in the SR-FTJ crosspoint array consists of two SR-FTJs stacked vertically, resulting in ultrahigh density. The SR-FTJ crosspoint array can operate as: 1) ternary content-addressable memory (TCAM) or 2) binary content addressable memory (BCAM) or physically unclonable function (PUF) in the dual-mode operation. In the dual-mode operation, the amount of the current flowing through the SR-FTJs remains the same, resulting in a stable PUF response regardless of the BCAM data. The dual-mode operation of the SR-FTJ crosspoint array is experimentally verified by 4-in wafer-level demonstrations. HSPICE simulation results using the industrial-compatible 180-nm technology with the SR-FTJ model reflecting measured characteristics show that the SR-FTJ crosspoint array achieves the lowest search energy (2.05 fJ/search/bit) and the highest randomness (Hamming weight of 0.5000) among the previous content addressable memories (CAMs) and PUFs. In addition, the SR-FTJ crosspoint array reduces area by <inline-formula> <tex-math notation="LaTeX">></tex-math> </inline-formula>84.2% compared to the previous structures that implement individual CAM and PUF.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2023.3265667</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5751-7973</orcidid><orcidid>https://orcid.org/0000-0003-0757-2581</orcidid><orcidid>https://orcid.org/0000-0003-4772-2695</orcidid><orcidid>https://orcid.org/0000-0002-2026-2097</orcidid><orcidid>https://orcid.org/0000-0002-9028-4603</orcidid><orcidid>https://orcid.org/0000-0002-7995-6640</orcidid><orcidid>https://orcid.org/0000-0002-4222-1587</orcidid><orcidid>https://orcid.org/0000-0003-0317-8210</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2023-07, Vol.58 (7), p.1-11 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSSC_2023_3265667 |
source | IEEE Electronic Library (IEL) |
subjects | Area efficiency Arrays Associative memory content addressable memory (CAM) crosspoint array Density dual-mode operation Electrodes Ferroelectric materials Ferroelectricity Hysteresis Internet of Things Internet of Things (IoT) Junctions leakage current Optical switches physically unclonable function (PUF) self-rectifying ferroelectric tunnel junction (SR-FTJ) Tantalum Tunnel junctions |
title | Dual-Mode Operations of Self-Rectifying Ferroelectric Tunnel Junction Crosspoint Array for High-Density Integration of IoT Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-Mode%20Operations%20of%20Self-Rectifying%20Ferroelectric%20Tunnel%20Junction%20Crosspoint%20Array%20for%20High-Density%20Integration%20of%20IoT%20Devices&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Lim,%20Sehee&rft.date=2023-07-01&rft.volume=58&rft.issue=7&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2023.3265667&rft_dat=%3Cproquest_RIE%3E2830414277%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2830414277&rft_id=info:pmid/&rft_ieee_id=10103903&rfr_iscdi=true |