An Optically Addressed Nanowire-Based Retinal Prosthesis With Wireless Stimulation Waveform Control and Charge Telemetering
Current retinal prostheses (RPs) have not achieved useful vision restoration, as their resolution is limited by power dissipation and complexity of interconnect. This article presents an inductively powered wireless system on a chip (SoC) for an electrically controlled, optically addressed retinal p...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2021-11, Vol.56 (11), p.3263-3273 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3273 |
---|---|
container_issue | 11 |
container_start_page | 3263 |
container_title | IEEE journal of solid-state circuits |
container_volume | 56 |
creator | Akinin, Abraham Ford, Jeremy M. Wu, Jiajia Kim, Chul Thacker, Hiren D. Mercier, Patrick P. Cauwenberghs, Gert |
description | Current retinal prostheses (RPs) have not achieved useful vision restoration, as their resolution is limited by power dissipation and complexity of interconnect. This article presents an inductively powered wireless system on a chip (SoC) for an electrically controlled, optically addressed retinal prosthetic system. The SoC interfaces to a co-fabricated nanoengineered photosensitive electrode array using only two wires. To reduce the thermal dissipation near sensitive retinal tissue, the proposed design pushes voltage regulation and charge-balanced stimulation control off the implant via a duty-cycled wireless charge metering technique. A calibration technique compensating for power fluctuation caused by eye movement is also presented. Implemented in 180-nm CMOS and delivering up to 3~\mu \text{C} of charge at 20-nC resolution, the SoC achieves 73% RF-to-stimulation power efficiency. |
doi_str_mv | 10.1109/JSSC.2021.3113648 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2021_3113648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9565909</ieee_id><sourcerecordid>2586591911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-55b9651d6c7977fb5ba7b593bf7d2876203f8342332b6c351bf0841ff7e0ab2d3</originalsourceid><addsrcrecordid>eNqNkE1v1DAQhi1EJZaFH4C4WOKIsvgjju3jEvHRqqIVW1RukZOMu66y9mJ7qSr-fB22gmsvHo30PuOZB6E3lKwoJfrD2WbTrhhhdMUp5U2tnqEFFUJVVPKfz9GCEKoqzQh5gV6mdFvaulZ0gf6sPb7YZzeYabrH63GMkBKM-Jvx4c5FqD6auf0O2Xkz4csYUt5Ccglfu7wtT4SpEHiT3e4wmeyCx9fmN9gQd7gNPscwYeNH3G5NvAF8VeI7yBCdv3mFTqyZErx-rEv04_Onq_ZrdX7x5bRdn1cD0zxXQvS6EXRsBqmltL3ojeyF5r2VI1OyYYRbxWvGOeubgQvaW6Jqaq0EYno28iV6d5y7j-HXAVLubsMhlnNSx4RqhKa6OFsiekwN5cYUwXb76HYm3neUdLPjbnbczY67R8eFeX9k7qAPNg0O_AD_OEKIpLSpC1x8zz-op6dbl__abMPB54K-PaIO4D-iRVmeaP4AUGGZ7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586591911</pqid></control><display><type>article</type><title>An Optically Addressed Nanowire-Based Retinal Prosthesis With Wireless Stimulation Waveform Control and Charge Telemetering</title><source>IEEE Electronic Library (IEL)</source><creator>Akinin, Abraham ; Ford, Jeremy M. ; Wu, Jiajia ; Kim, Chul ; Thacker, Hiren D. ; Mercier, Patrick P. ; Cauwenberghs, Gert</creator><creatorcontrib>Akinin, Abraham ; Ford, Jeremy M. ; Wu, Jiajia ; Kim, Chul ; Thacker, Hiren D. ; Mercier, Patrick P. ; Cauwenberghs, Gert</creatorcontrib><description>Current retinal prostheses (RPs) have not achieved useful vision restoration, as their resolution is limited by power dissipation and complexity of interconnect. This article presents an inductively powered wireless system on a chip (SoC) for an electrically controlled, optically addressed retinal prosthetic system. The SoC interfaces to a co-fabricated nanoengineered photosensitive electrode array using only two wires. To reduce the thermal dissipation near sensitive retinal tissue, the proposed design pushes voltage regulation and charge-balanced stimulation control off the implant via a duty-cycled wireless charge metering technique. A calibration technique compensating for power fluctuation caused by eye movement is also presented. Implemented in 180-nm CMOS and delivering up to <inline-formula> <tex-math notation="LaTeX">3~\mu \text{C} </tex-math></inline-formula> of charge at 20-nC resolution, the SoC achieves 73% RF-to-stimulation power efficiency.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2021.3113648</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Charge balance ; CMOS ; Engineering ; Engineering, Electrical & Electronic ; Eye movements ; implant ; Implants ; microelectrode array (MEA) ; MOS devices ; Nanowires ; neural stimulation ; neuroprosthesis ; photodiode ; Photosensitivity ; Power efficiency ; Power management ; Prostheses ; Prosthetics ; Radio frequency ; rectifier ; Retina ; retinal prosthesis ; Science & Technology ; Stimulation ; System on chip ; Technology ; Telemetering ; Voltage control ; Waveforms ; Wireless communication ; wireless power</subject><ispartof>IEEE journal of solid-state circuits, 2021-11, Vol.56 (11), p.3263-3273</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000711641100011</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c293t-55b9651d6c7977fb5ba7b593bf7d2876203f8342332b6c351bf0841ff7e0ab2d3</citedby><cites>FETCH-LOGICAL-c293t-55b9651d6c7977fb5ba7b593bf7d2876203f8342332b6c351bf0841ff7e0ab2d3</cites><orcidid>0000-0002-3882-6022 ; 0000-0002-6761-8425 ; 0000-0003-1488-5076 ; 0000-0002-3166-5529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9565909$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,39263,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9565909$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Akinin, Abraham</creatorcontrib><creatorcontrib>Ford, Jeremy M.</creatorcontrib><creatorcontrib>Wu, Jiajia</creatorcontrib><creatorcontrib>Kim, Chul</creatorcontrib><creatorcontrib>Thacker, Hiren D.</creatorcontrib><creatorcontrib>Mercier, Patrick P.</creatorcontrib><creatorcontrib>Cauwenberghs, Gert</creatorcontrib><title>An Optically Addressed Nanowire-Based Retinal Prosthesis With Wireless Stimulation Waveform Control and Charge Telemetering</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><addtitle>IEEE J SOLID-ST CIRC</addtitle><description>Current retinal prostheses (RPs) have not achieved useful vision restoration, as their resolution is limited by power dissipation and complexity of interconnect. This article presents an inductively powered wireless system on a chip (SoC) for an electrically controlled, optically addressed retinal prosthetic system. The SoC interfaces to a co-fabricated nanoengineered photosensitive electrode array using only two wires. To reduce the thermal dissipation near sensitive retinal tissue, the proposed design pushes voltage regulation and charge-balanced stimulation control off the implant via a duty-cycled wireless charge metering technique. A calibration technique compensating for power fluctuation caused by eye movement is also presented. Implemented in 180-nm CMOS and delivering up to <inline-formula> <tex-math notation="LaTeX">3~\mu \text{C} </tex-math></inline-formula> of charge at 20-nC resolution, the SoC achieves 73% RF-to-stimulation power efficiency.</description><subject>Charge balance</subject><subject>CMOS</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Eye movements</subject><subject>implant</subject><subject>Implants</subject><subject>microelectrode array (MEA)</subject><subject>MOS devices</subject><subject>Nanowires</subject><subject>neural stimulation</subject><subject>neuroprosthesis</subject><subject>photodiode</subject><subject>Photosensitivity</subject><subject>Power efficiency</subject><subject>Power management</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>Radio frequency</subject><subject>rectifier</subject><subject>Retina</subject><subject>retinal prosthesis</subject><subject>Science & Technology</subject><subject>Stimulation</subject><subject>System on chip</subject><subject>Technology</subject><subject>Telemetering</subject><subject>Voltage control</subject><subject>Waveforms</subject><subject>Wireless communication</subject><subject>wireless power</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkE1v1DAQhi1EJZaFH4C4WOKIsvgjju3jEvHRqqIVW1RukZOMu66y9mJ7qSr-fB22gmsvHo30PuOZB6E3lKwoJfrD2WbTrhhhdMUp5U2tnqEFFUJVVPKfz9GCEKoqzQh5gV6mdFvaulZ0gf6sPb7YZzeYabrH63GMkBKM-Jvx4c5FqD6auf0O2Xkz4csYUt5Ccglfu7wtT4SpEHiT3e4wmeyCx9fmN9gQd7gNPscwYeNH3G5NvAF8VeI7yBCdv3mFTqyZErx-rEv04_Onq_ZrdX7x5bRdn1cD0zxXQvS6EXRsBqmltL3ojeyF5r2VI1OyYYRbxWvGOeubgQvaW6Jqaq0EYno28iV6d5y7j-HXAVLubsMhlnNSx4RqhKa6OFsiekwN5cYUwXb76HYm3neUdLPjbnbczY67R8eFeX9k7qAPNg0O_AD_OEKIpLSpC1x8zz-op6dbl__abMPB54K-PaIO4D-iRVmeaP4AUGGZ7w</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Akinin, Abraham</creator><creator>Ford, Jeremy M.</creator><creator>Wu, Jiajia</creator><creator>Kim, Chul</creator><creator>Thacker, Hiren D.</creator><creator>Mercier, Patrick P.</creator><creator>Cauwenberghs, Gert</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3882-6022</orcidid><orcidid>https://orcid.org/0000-0002-6761-8425</orcidid><orcidid>https://orcid.org/0000-0003-1488-5076</orcidid><orcidid>https://orcid.org/0000-0002-3166-5529</orcidid></search><sort><creationdate>20211101</creationdate><title>An Optically Addressed Nanowire-Based Retinal Prosthesis With Wireless Stimulation Waveform Control and Charge Telemetering</title><author>Akinin, Abraham ; Ford, Jeremy M. ; Wu, Jiajia ; Kim, Chul ; Thacker, Hiren D. ; Mercier, Patrick P. ; Cauwenberghs, Gert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-55b9651d6c7977fb5ba7b593bf7d2876203f8342332b6c351bf0841ff7e0ab2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Charge balance</topic><topic>CMOS</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Eye movements</topic><topic>implant</topic><topic>Implants</topic><topic>microelectrode array (MEA)</topic><topic>MOS devices</topic><topic>Nanowires</topic><topic>neural stimulation</topic><topic>neuroprosthesis</topic><topic>photodiode</topic><topic>Photosensitivity</topic><topic>Power efficiency</topic><topic>Power management</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>Radio frequency</topic><topic>rectifier</topic><topic>Retina</topic><topic>retinal prosthesis</topic><topic>Science & Technology</topic><topic>Stimulation</topic><topic>System on chip</topic><topic>Technology</topic><topic>Telemetering</topic><topic>Voltage control</topic><topic>Waveforms</topic><topic>Wireless communication</topic><topic>wireless power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akinin, Abraham</creatorcontrib><creatorcontrib>Ford, Jeremy M.</creatorcontrib><creatorcontrib>Wu, Jiajia</creatorcontrib><creatorcontrib>Kim, Chul</creatorcontrib><creatorcontrib>Thacker, Hiren D.</creatorcontrib><creatorcontrib>Mercier, Patrick P.</creatorcontrib><creatorcontrib>Cauwenberghs, Gert</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Akinin, Abraham</au><au>Ford, Jeremy M.</au><au>Wu, Jiajia</au><au>Kim, Chul</au><au>Thacker, Hiren D.</au><au>Mercier, Patrick P.</au><au>Cauwenberghs, Gert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optically Addressed Nanowire-Based Retinal Prosthesis With Wireless Stimulation Waveform Control and Charge Telemetering</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><stitle>IEEE J SOLID-ST CIRC</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>56</volume><issue>11</issue><spage>3263</spage><epage>3273</epage><pages>3263-3273</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>Current retinal prostheses (RPs) have not achieved useful vision restoration, as their resolution is limited by power dissipation and complexity of interconnect. This article presents an inductively powered wireless system on a chip (SoC) for an electrically controlled, optically addressed retinal prosthetic system. The SoC interfaces to a co-fabricated nanoengineered photosensitive electrode array using only two wires. To reduce the thermal dissipation near sensitive retinal tissue, the proposed design pushes voltage regulation and charge-balanced stimulation control off the implant via a duty-cycled wireless charge metering technique. A calibration technique compensating for power fluctuation caused by eye movement is also presented. Implemented in 180-nm CMOS and delivering up to <inline-formula> <tex-math notation="LaTeX">3~\mu \text{C} </tex-math></inline-formula> of charge at 20-nC resolution, the SoC achieves 73% RF-to-stimulation power efficiency.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/JSSC.2021.3113648</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3882-6022</orcidid><orcidid>https://orcid.org/0000-0002-6761-8425</orcidid><orcidid>https://orcid.org/0000-0003-1488-5076</orcidid><orcidid>https://orcid.org/0000-0002-3166-5529</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2021-11, Vol.56 (11), p.3263-3273 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSSC_2021_3113648 |
source | IEEE Electronic Library (IEL) |
subjects | Charge balance CMOS Engineering Engineering, Electrical & Electronic Eye movements implant Implants microelectrode array (MEA) MOS devices Nanowires neural stimulation neuroprosthesis photodiode Photosensitivity Power efficiency Power management Prostheses Prosthetics Radio frequency rectifier Retina retinal prosthesis Science & Technology Stimulation System on chip Technology Telemetering Voltage control Waveforms Wireless communication wireless power |
title | An Optically Addressed Nanowire-Based Retinal Prosthesis With Wireless Stimulation Waveform Control and Charge Telemetering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T08%3A23%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optically%20Addressed%20Nanowire-Based%20Retinal%20Prosthesis%20With%20Wireless%20Stimulation%20Waveform%20Control%20and%20Charge%20Telemetering&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Akinin,%20Abraham&rft.date=2021-11-01&rft.volume=56&rft.issue=11&rft.spage=3263&rft.epage=3273&rft.pages=3263-3273&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2021.3113648&rft_dat=%3Cproquest_RIE%3E2586591911%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586591911&rft_id=info:pmid/&rft_ieee_id=9565909&rfr_iscdi=true |