A 1.9-mW SVM Processor With On-Chip Active Learning for Epileptic Seizure Control

This article presents a support vector machine (SVM) processor that supports both seizure detection and on-chip model adaptation for epileptic seizure control. Alternating direction method of multipliers (ADMM) is utilized for highly parallel computing for SVM training. From the algorithm aspect, mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2020-02, Vol.55 (2), p.452-464
Hauptverfasser: Huang, Shuo-An, Chang, Kai-Chieh, Liou, Horng-Huei, Yang, Chia-Hsiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 464
container_issue 2
container_start_page 452
container_title IEEE journal of solid-state circuits
container_volume 55
creator Huang, Shuo-An
Chang, Kai-Chieh
Liou, Horng-Huei
Yang, Chia-Hsiang
description This article presents a support vector machine (SVM) processor that supports both seizure detection and on-chip model adaptation for epileptic seizure control. Alternating direction method of multipliers (ADMM) is utilized for highly parallel computing for SVM training. From the algorithm aspect, minimum redundancy maximum relevance (mRMR) and low-rank approximation are exploited to reduce overall computational complexity by 99.4% while also reducing memory storage by 90.4%. For hardware optimization, overall hardware complexity is reduced by 87% through a hardware-shared configurable coordinate rotation digital computer (CORDIC)-based processing element array. Parallel rotations and folded structure for the approximate Jacobi method reduce overall training latency by 98.6%. The chip achieves a detection performance with a 96.6% accuracy and a 0.28/h false alarm rate within 0.71 s with the power dissipation of 1.9 mW. The proposed SVM processor achieves the shortest detection latency compared with the state-of-the-art seizure detectors. It also supports real-time model adaptation with a latency of 0.78 s. Compared with previous designs, this work achieves a 22× higher throughput and a 162× higher energy efficiency for SVM training.
doi_str_mv 10.1109/JSSC.2019.2954775
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2019_2954775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8920049</ieee_id><sourcerecordid>2349116140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-2633a89dd659ce457c96c5f508b7e0ee60b3187a4ccb4ce2d23d3d5be8678bef3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFZ_gLgZcJ04z2RmWUJ9UakSte6GZHJjp7RJnEkF_fWmtLi6HPjOufAhdElJTCnRN495nsWMUB0zLUWayiM0olKqiKb84xiNCKEq0oyQU3QWwmqIQig6Qi8TTGMdbRY4f3_Cz761EELr8cL1SzxvomzpOjyxvfsGPIPCN675xPUATDu3hq53FufgfrcecNY2vW_X5-ikLtYBLg53jN5up6_ZfTSb3z1kk1lkmeZ9xBLOC6WrKpHagpCp1YmVtSSqTIEAJKTkVKWFsLYUFljFeMUrWYJKUlVCzcfoer_b-fZrC6E3q3brm-GlYVxoShMqyEDRPWV9G4KH2nTebQr_YygxO3NmZ87szJmDuaFzte84APjn1c6e0PwPuNlohg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349116140</pqid></control><display><type>article</type><title>A 1.9-mW SVM Processor With On-Chip Active Learning for Epileptic Seizure Control</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Shuo-An ; Chang, Kai-Chieh ; Liou, Horng-Huei ; Yang, Chia-Hsiang</creator><creatorcontrib>Huang, Shuo-An ; Chang, Kai-Chieh ; Liou, Horng-Huei ; Yang, Chia-Hsiang</creatorcontrib><description>This article presents a support vector machine (SVM) processor that supports both seizure detection and on-chip model adaptation for epileptic seizure control. Alternating direction method of multipliers (ADMM) is utilized for highly parallel computing for SVM training. From the algorithm aspect, minimum redundancy maximum relevance (mRMR) and low-rank approximation are exploited to reduce overall computational complexity by 99.4% while also reducing memory storage by 90.4%. For hardware optimization, overall hardware complexity is reduced by 87% through a hardware-shared configurable coordinate rotation digital computer (CORDIC)-based processing element array. Parallel rotations and folded structure for the approximate Jacobi method reduce overall training latency by 98.6%. The chip achieves a detection performance with a 96.6% accuracy and a 0.28/h false alarm rate within 0.71 s with the power dissipation of 1.9 mW. The proposed SVM processor achieves the shortest detection latency compared with the state-of-the-art seizure detectors. It also supports real-time model adaptation with a latency of 0.78 s. Compared with previous designs, this work achieves a 22× higher throughput and a 162× higher energy efficiency for SVM training.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2019.2954775</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Adaptation models ; Algorithms ; Brain modeling ; CMOS digital-integrated circuits ; Complexity ; Computational complexity ; Convulsions &amp; seizures ; Digital computers ; electroencephalogram (EEG) ; Energy management ; False alarms ; Feature extraction ; Hardware ; Microprocessors ; model adaptation ; on-chip training ; Optimization ; Power management ; Redundancy ; seizure detection ; Seizures ; support vector machine (SVM) ; Support vector machines ; Training</subject><ispartof>IEEE journal of solid-state circuits, 2020-02, Vol.55 (2), p.452-464</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-2633a89dd659ce457c96c5f508b7e0ee60b3187a4ccb4ce2d23d3d5be8678bef3</citedby><cites>FETCH-LOGICAL-c293t-2633a89dd659ce457c96c5f508b7e0ee60b3187a4ccb4ce2d23d3d5be8678bef3</cites><orcidid>0000-0003-1163-321X ; 0000-0001-8121-0242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8920049$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8920049$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Shuo-An</creatorcontrib><creatorcontrib>Chang, Kai-Chieh</creatorcontrib><creatorcontrib>Liou, Horng-Huei</creatorcontrib><creatorcontrib>Yang, Chia-Hsiang</creatorcontrib><title>A 1.9-mW SVM Processor With On-Chip Active Learning for Epileptic Seizure Control</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This article presents a support vector machine (SVM) processor that supports both seizure detection and on-chip model adaptation for epileptic seizure control. Alternating direction method of multipliers (ADMM) is utilized for highly parallel computing for SVM training. From the algorithm aspect, minimum redundancy maximum relevance (mRMR) and low-rank approximation are exploited to reduce overall computational complexity by 99.4% while also reducing memory storage by 90.4%. For hardware optimization, overall hardware complexity is reduced by 87% through a hardware-shared configurable coordinate rotation digital computer (CORDIC)-based processing element array. Parallel rotations and folded structure for the approximate Jacobi method reduce overall training latency by 98.6%. The chip achieves a detection performance with a 96.6% accuracy and a 0.28/h false alarm rate within 0.71 s with the power dissipation of 1.9 mW. The proposed SVM processor achieves the shortest detection latency compared with the state-of-the-art seizure detectors. It also supports real-time model adaptation with a latency of 0.78 s. Compared with previous designs, this work achieves a 22× higher throughput and a 162× higher energy efficiency for SVM training.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Brain modeling</subject><subject>CMOS digital-integrated circuits</subject><subject>Complexity</subject><subject>Computational complexity</subject><subject>Convulsions &amp; seizures</subject><subject>Digital computers</subject><subject>electroencephalogram (EEG)</subject><subject>Energy management</subject><subject>False alarms</subject><subject>Feature extraction</subject><subject>Hardware</subject><subject>Microprocessors</subject><subject>model adaptation</subject><subject>on-chip training</subject><subject>Optimization</subject><subject>Power management</subject><subject>Redundancy</subject><subject>seizure detection</subject><subject>Seizures</subject><subject>support vector machine (SVM)</subject><subject>Support vector machines</subject><subject>Training</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhQdRsFZ_gLgZcJ04z2RmWUJ9UakSte6GZHJjp7RJnEkF_fWmtLi6HPjOufAhdElJTCnRN495nsWMUB0zLUWayiM0olKqiKb84xiNCKEq0oyQU3QWwmqIQig6Qi8TTGMdbRY4f3_Cz761EELr8cL1SzxvomzpOjyxvfsGPIPCN675xPUATDu3hq53FufgfrcecNY2vW_X5-ikLtYBLg53jN5up6_ZfTSb3z1kk1lkmeZ9xBLOC6WrKpHagpCp1YmVtSSqTIEAJKTkVKWFsLYUFljFeMUrWYJKUlVCzcfoer_b-fZrC6E3q3brm-GlYVxoShMqyEDRPWV9G4KH2nTebQr_YygxO3NmZ87szJmDuaFzte84APjn1c6e0PwPuNlohg</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Huang, Shuo-An</creator><creator>Chang, Kai-Chieh</creator><creator>Liou, Horng-Huei</creator><creator>Yang, Chia-Hsiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1163-321X</orcidid><orcidid>https://orcid.org/0000-0001-8121-0242</orcidid></search><sort><creationdate>20200201</creationdate><title>A 1.9-mW SVM Processor With On-Chip Active Learning for Epileptic Seizure Control</title><author>Huang, Shuo-An ; Chang, Kai-Chieh ; Liou, Horng-Huei ; Yang, Chia-Hsiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-2633a89dd659ce457c96c5f508b7e0ee60b3187a4ccb4ce2d23d3d5be8678bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Brain modeling</topic><topic>CMOS digital-integrated circuits</topic><topic>Complexity</topic><topic>Computational complexity</topic><topic>Convulsions &amp; seizures</topic><topic>Digital computers</topic><topic>electroencephalogram (EEG)</topic><topic>Energy management</topic><topic>False alarms</topic><topic>Feature extraction</topic><topic>Hardware</topic><topic>Microprocessors</topic><topic>model adaptation</topic><topic>on-chip training</topic><topic>Optimization</topic><topic>Power management</topic><topic>Redundancy</topic><topic>seizure detection</topic><topic>Seizures</topic><topic>support vector machine (SVM)</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Shuo-An</creatorcontrib><creatorcontrib>Chang, Kai-Chieh</creatorcontrib><creatorcontrib>Liou, Horng-Huei</creatorcontrib><creatorcontrib>Yang, Chia-Hsiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Shuo-An</au><au>Chang, Kai-Chieh</au><au>Liou, Horng-Huei</au><au>Yang, Chia-Hsiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 1.9-mW SVM Processor With On-Chip Active Learning for Epileptic Seizure Control</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>55</volume><issue>2</issue><spage>452</spage><epage>464</epage><pages>452-464</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This article presents a support vector machine (SVM) processor that supports both seizure detection and on-chip model adaptation for epileptic seizure control. Alternating direction method of multipliers (ADMM) is utilized for highly parallel computing for SVM training. From the algorithm aspect, minimum redundancy maximum relevance (mRMR) and low-rank approximation are exploited to reduce overall computational complexity by 99.4% while also reducing memory storage by 90.4%. For hardware optimization, overall hardware complexity is reduced by 87% through a hardware-shared configurable coordinate rotation digital computer (CORDIC)-based processing element array. Parallel rotations and folded structure for the approximate Jacobi method reduce overall training latency by 98.6%. The chip achieves a detection performance with a 96.6% accuracy and a 0.28/h false alarm rate within 0.71 s with the power dissipation of 1.9 mW. The proposed SVM processor achieves the shortest detection latency compared with the state-of-the-art seizure detectors. It also supports real-time model adaptation with a latency of 0.78 s. Compared with previous designs, this work achieves a 22× higher throughput and a 162× higher energy efficiency for SVM training.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2019.2954775</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1163-321X</orcidid><orcidid>https://orcid.org/0000-0001-8121-0242</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2020-02, Vol.55 (2), p.452-464
issn 0018-9200
1558-173X
language eng
recordid cdi_crossref_primary_10_1109_JSSC_2019_2954775
source IEEE Electronic Library (IEL)
subjects Adaptation
Adaptation models
Algorithms
Brain modeling
CMOS digital-integrated circuits
Complexity
Computational complexity
Convulsions & seizures
Digital computers
electroencephalogram (EEG)
Energy management
False alarms
Feature extraction
Hardware
Microprocessors
model adaptation
on-chip training
Optimization
Power management
Redundancy
seizure detection
Seizures
support vector machine (SVM)
Support vector machines
Training
title A 1.9-mW SVM Processor With On-Chip Active Learning for Epileptic Seizure Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A10%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%201.9-mW%20SVM%20Processor%20With%20On-Chip%20Active%20Learning%20for%20Epileptic%20Seizure%20Control&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Huang,%20Shuo-An&rft.date=2020-02-01&rft.volume=55&rft.issue=2&rft.spage=452&rft.epage=464&rft.pages=452-464&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2019.2954775&rft_dat=%3Cproquest_RIE%3E2349116140%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2349116140&rft_id=info:pmid/&rft_ieee_id=8920049&rfr_iscdi=true