A 1.9-mW SVM Processor With On-Chip Active Learning for Epileptic Seizure Control
This article presents a support vector machine (SVM) processor that supports both seizure detection and on-chip model adaptation for epileptic seizure control. Alternating direction method of multipliers (ADMM) is utilized for highly parallel computing for SVM training. From the algorithm aspect, mi...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2020-02, Vol.55 (2), p.452-464 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 464 |
---|---|
container_issue | 2 |
container_start_page | 452 |
container_title | IEEE journal of solid-state circuits |
container_volume | 55 |
creator | Huang, Shuo-An Chang, Kai-Chieh Liou, Horng-Huei Yang, Chia-Hsiang |
description | This article presents a support vector machine (SVM) processor that supports both seizure detection and on-chip model adaptation for epileptic seizure control. Alternating direction method of multipliers (ADMM) is utilized for highly parallel computing for SVM training. From the algorithm aspect, minimum redundancy maximum relevance (mRMR) and low-rank approximation are exploited to reduce overall computational complexity by 99.4% while also reducing memory storage by 90.4%. For hardware optimization, overall hardware complexity is reduced by 87% through a hardware-shared configurable coordinate rotation digital computer (CORDIC)-based processing element array. Parallel rotations and folded structure for the approximate Jacobi method reduce overall training latency by 98.6%. The chip achieves a detection performance with a 96.6% accuracy and a 0.28/h false alarm rate within 0.71 s with the power dissipation of 1.9 mW. The proposed SVM processor achieves the shortest detection latency compared with the state-of-the-art seizure detectors. It also supports real-time model adaptation with a latency of 0.78 s. Compared with previous designs, this work achieves a 22× higher throughput and a 162× higher energy efficiency for SVM training. |
doi_str_mv | 10.1109/JSSC.2019.2954775 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2019_2954775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8920049</ieee_id><sourcerecordid>2349116140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-2633a89dd659ce457c96c5f508b7e0ee60b3187a4ccb4ce2d23d3d5be8678bef3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFZ_gLgZcJ04z2RmWUJ9UakSte6GZHJjp7RJnEkF_fWmtLi6HPjOufAhdElJTCnRN495nsWMUB0zLUWayiM0olKqiKb84xiNCKEq0oyQU3QWwmqIQig6Qi8TTGMdbRY4f3_Cz761EELr8cL1SzxvomzpOjyxvfsGPIPCN675xPUATDu3hq53FufgfrcecNY2vW_X5-ikLtYBLg53jN5up6_ZfTSb3z1kk1lkmeZ9xBLOC6WrKpHagpCp1YmVtSSqTIEAJKTkVKWFsLYUFljFeMUrWYJKUlVCzcfoer_b-fZrC6E3q3brm-GlYVxoShMqyEDRPWV9G4KH2nTebQr_YygxO3NmZ87szJmDuaFzte84APjn1c6e0PwPuNlohg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349116140</pqid></control><display><type>article</type><title>A 1.9-mW SVM Processor With On-Chip Active Learning for Epileptic Seizure Control</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Shuo-An ; Chang, Kai-Chieh ; Liou, Horng-Huei ; Yang, Chia-Hsiang</creator><creatorcontrib>Huang, Shuo-An ; Chang, Kai-Chieh ; Liou, Horng-Huei ; Yang, Chia-Hsiang</creatorcontrib><description>This article presents a support vector machine (SVM) processor that supports both seizure detection and on-chip model adaptation for epileptic seizure control. Alternating direction method of multipliers (ADMM) is utilized for highly parallel computing for SVM training. From the algorithm aspect, minimum redundancy maximum relevance (mRMR) and low-rank approximation are exploited to reduce overall computational complexity by 99.4% while also reducing memory storage by 90.4%. For hardware optimization, overall hardware complexity is reduced by 87% through a hardware-shared configurable coordinate rotation digital computer (CORDIC)-based processing element array. Parallel rotations and folded structure for the approximate Jacobi method reduce overall training latency by 98.6%. The chip achieves a detection performance with a 96.6% accuracy and a 0.28/h false alarm rate within 0.71 s with the power dissipation of 1.9 mW. The proposed SVM processor achieves the shortest detection latency compared with the state-of-the-art seizure detectors. It also supports real-time model adaptation with a latency of 0.78 s. Compared with previous designs, this work achieves a 22× higher throughput and a 162× higher energy efficiency for SVM training.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2019.2954775</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Adaptation models ; Algorithms ; Brain modeling ; CMOS digital-integrated circuits ; Complexity ; Computational complexity ; Convulsions & seizures ; Digital computers ; electroencephalogram (EEG) ; Energy management ; False alarms ; Feature extraction ; Hardware ; Microprocessors ; model adaptation ; on-chip training ; Optimization ; Power management ; Redundancy ; seizure detection ; Seizures ; support vector machine (SVM) ; Support vector machines ; Training</subject><ispartof>IEEE journal of solid-state circuits, 2020-02, Vol.55 (2), p.452-464</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-2633a89dd659ce457c96c5f508b7e0ee60b3187a4ccb4ce2d23d3d5be8678bef3</citedby><cites>FETCH-LOGICAL-c293t-2633a89dd659ce457c96c5f508b7e0ee60b3187a4ccb4ce2d23d3d5be8678bef3</cites><orcidid>0000-0003-1163-321X ; 0000-0001-8121-0242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8920049$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8920049$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Shuo-An</creatorcontrib><creatorcontrib>Chang, Kai-Chieh</creatorcontrib><creatorcontrib>Liou, Horng-Huei</creatorcontrib><creatorcontrib>Yang, Chia-Hsiang</creatorcontrib><title>A 1.9-mW SVM Processor With On-Chip Active Learning for Epileptic Seizure Control</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This article presents a support vector machine (SVM) processor that supports both seizure detection and on-chip model adaptation for epileptic seizure control. Alternating direction method of multipliers (ADMM) is utilized for highly parallel computing for SVM training. From the algorithm aspect, minimum redundancy maximum relevance (mRMR) and low-rank approximation are exploited to reduce overall computational complexity by 99.4% while also reducing memory storage by 90.4%. For hardware optimization, overall hardware complexity is reduced by 87% through a hardware-shared configurable coordinate rotation digital computer (CORDIC)-based processing element array. Parallel rotations and folded structure for the approximate Jacobi method reduce overall training latency by 98.6%. The chip achieves a detection performance with a 96.6% accuracy and a 0.28/h false alarm rate within 0.71 s with the power dissipation of 1.9 mW. The proposed SVM processor achieves the shortest detection latency compared with the state-of-the-art seizure detectors. It also supports real-time model adaptation with a latency of 0.78 s. Compared with previous designs, this work achieves a 22× higher throughput and a 162× higher energy efficiency for SVM training.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Algorithms</subject><subject>Brain modeling</subject><subject>CMOS digital-integrated circuits</subject><subject>Complexity</subject><subject>Computational complexity</subject><subject>Convulsions & seizures</subject><subject>Digital computers</subject><subject>electroencephalogram (EEG)</subject><subject>Energy management</subject><subject>False alarms</subject><subject>Feature extraction</subject><subject>Hardware</subject><subject>Microprocessors</subject><subject>model adaptation</subject><subject>on-chip training</subject><subject>Optimization</subject><subject>Power management</subject><subject>Redundancy</subject><subject>seizure detection</subject><subject>Seizures</subject><subject>support vector machine (SVM)</subject><subject>Support vector machines</subject><subject>Training</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhQdRsFZ_gLgZcJ04z2RmWUJ9UakSte6GZHJjp7RJnEkF_fWmtLi6HPjOufAhdElJTCnRN495nsWMUB0zLUWayiM0olKqiKb84xiNCKEq0oyQU3QWwmqIQig6Qi8TTGMdbRY4f3_Cz761EELr8cL1SzxvomzpOjyxvfsGPIPCN675xPUATDu3hq53FufgfrcecNY2vW_X5-ikLtYBLg53jN5up6_ZfTSb3z1kk1lkmeZ9xBLOC6WrKpHagpCp1YmVtSSqTIEAJKTkVKWFsLYUFljFeMUrWYJKUlVCzcfoer_b-fZrC6E3q3brm-GlYVxoShMqyEDRPWV9G4KH2nTebQr_YygxO3NmZ87szJmDuaFzte84APjn1c6e0PwPuNlohg</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Huang, Shuo-An</creator><creator>Chang, Kai-Chieh</creator><creator>Liou, Horng-Huei</creator><creator>Yang, Chia-Hsiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1163-321X</orcidid><orcidid>https://orcid.org/0000-0001-8121-0242</orcidid></search><sort><creationdate>20200201</creationdate><title>A 1.9-mW SVM Processor With On-Chip Active Learning for Epileptic Seizure Control</title><author>Huang, Shuo-An ; Chang, Kai-Chieh ; Liou, Horng-Huei ; Yang, Chia-Hsiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-2633a89dd659ce457c96c5f508b7e0ee60b3187a4ccb4ce2d23d3d5be8678bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Algorithms</topic><topic>Brain modeling</topic><topic>CMOS digital-integrated circuits</topic><topic>Complexity</topic><topic>Computational complexity</topic><topic>Convulsions & seizures</topic><topic>Digital computers</topic><topic>electroencephalogram (EEG)</topic><topic>Energy management</topic><topic>False alarms</topic><topic>Feature extraction</topic><topic>Hardware</topic><topic>Microprocessors</topic><topic>model adaptation</topic><topic>on-chip training</topic><topic>Optimization</topic><topic>Power management</topic><topic>Redundancy</topic><topic>seizure detection</topic><topic>Seizures</topic><topic>support vector machine (SVM)</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Shuo-An</creatorcontrib><creatorcontrib>Chang, Kai-Chieh</creatorcontrib><creatorcontrib>Liou, Horng-Huei</creatorcontrib><creatorcontrib>Yang, Chia-Hsiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Shuo-An</au><au>Chang, Kai-Chieh</au><au>Liou, Horng-Huei</au><au>Yang, Chia-Hsiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 1.9-mW SVM Processor With On-Chip Active Learning for Epileptic Seizure Control</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>55</volume><issue>2</issue><spage>452</spage><epage>464</epage><pages>452-464</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This article presents a support vector machine (SVM) processor that supports both seizure detection and on-chip model adaptation for epileptic seizure control. Alternating direction method of multipliers (ADMM) is utilized for highly parallel computing for SVM training. From the algorithm aspect, minimum redundancy maximum relevance (mRMR) and low-rank approximation are exploited to reduce overall computational complexity by 99.4% while also reducing memory storage by 90.4%. For hardware optimization, overall hardware complexity is reduced by 87% through a hardware-shared configurable coordinate rotation digital computer (CORDIC)-based processing element array. Parallel rotations and folded structure for the approximate Jacobi method reduce overall training latency by 98.6%. The chip achieves a detection performance with a 96.6% accuracy and a 0.28/h false alarm rate within 0.71 s with the power dissipation of 1.9 mW. The proposed SVM processor achieves the shortest detection latency compared with the state-of-the-art seizure detectors. It also supports real-time model adaptation with a latency of 0.78 s. Compared with previous designs, this work achieves a 22× higher throughput and a 162× higher energy efficiency for SVM training.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2019.2954775</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1163-321X</orcidid><orcidid>https://orcid.org/0000-0001-8121-0242</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2020-02, Vol.55 (2), p.452-464 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSSC_2019_2954775 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation Adaptation models Algorithms Brain modeling CMOS digital-integrated circuits Complexity Computational complexity Convulsions & seizures Digital computers electroencephalogram (EEG) Energy management False alarms Feature extraction Hardware Microprocessors model adaptation on-chip training Optimization Power management Redundancy seizure detection Seizures support vector machine (SVM) Support vector machines Training |
title | A 1.9-mW SVM Processor With On-Chip Active Learning for Epileptic Seizure Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A10%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%201.9-mW%20SVM%20Processor%20With%20On-Chip%20Active%20Learning%20for%20Epileptic%20Seizure%20Control&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Huang,%20Shuo-An&rft.date=2020-02-01&rft.volume=55&rft.issue=2&rft.spage=452&rft.epage=464&rft.pages=452-464&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2019.2954775&rft_dat=%3Cproquest_RIE%3E2349116140%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2349116140&rft_id=info:pmid/&rft_ieee_id=8920049&rfr_iscdi=true |