Analysis and Design of a 20-MHz Bandwidth, 50.5-dBm OOB-IIP3, and 5.4-mW TIA for SAW-Less Receivers
A power-efficient transimpedance amplifier with wide channel bandwidth is proposed to meet the stringent linearity requirements of surface acoustic wave-less frequency-division duplexing receivers. A unity-gain loop bandwidth of 1.6 GHz is achieved with low-power dissipation. This was done without u...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2018-05, Vol.53 (5), p.1468-1480 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1480 |
---|---|
container_issue | 5 |
container_start_page | 1468 |
container_title | IEEE journal of solid-state circuits |
container_volume | 53 |
creator | Pini, Giacomo Manstretta, Danilo Castello, Rinaldo |
description | A power-efficient transimpedance amplifier with wide channel bandwidth is proposed to meet the stringent linearity requirements of surface acoustic wave-less frequency-division duplexing receivers. A unity-gain loop bandwidth of 1.6 GHz is achieved with low-power dissipation. This was done without using any internal compensation but relying on zeros, both within the operational transconductance amplifier and in the feedback network, to ensure stability across all parameter variations. A simple non-linear analysis methodology is presented that provides important insights, useful for the design optimization. The prototype, implemented in 28-nm CMOS technology, has 14 dB of gain with 20-MHz bandwidth and achieves 21.1- \mu \text{V} in-band noise together with 33 and 50.5-dBm IIP3 at 6 and 100-MHz offset, respectively, while requiring only 5.4 mW. The corresponding filter figure of merit (FOM) of 183.2 dBJ −1 at 100-MHz offset exceeds that of all previous designs. Simulation shows that an even better FOM could be achieved using a larger width (more linear) feedback resistor. Finally, the differential input impedance is less than 33 \Omega at all frequencies. |
doi_str_mv | 10.1109/JSSC.2018.2791489 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2018_2791489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8274962</ieee_id><sourcerecordid>2031103397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7a205d42078f73b90c2807ad7f4fe40024646d498004e57c928421892c03f66f3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-AOOliVe6Tj922x4X_GANBiMYvDXrbqtLgIUWNPjrXYR4mszM804yD0KXFCJKQd88jka9iAFVEZOaCqWPUIvGsSJU8rdj1IJmRTQDOEVnIUybVghFW6hIF_lsG6qA80WJb22oPha4djjHDMhT_wd3m_l3Va4_OziGKCZld46Hwy7Jsmfe-QvFkSDzCR5nKXa1x6N0QgY2BPxiC1t9WR_O0YnLZ8FeHGobvd7fjXt9Mhg-ZL10QAqm-ZrInEFcCgZSOcnfNRRMgcxL6YSzAoCJRCSl0ApA2FgWminBqNKsAO6SxPE2ut7fXfp6tbFhbab1xjf_BcOAN5o417Kh6J4qfB2Ct84sfTXP_dZQMDuXZufS7Fyag8smc7XPVNbaf14xKXTC-C-L1GkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2031103397</pqid></control><display><type>article</type><title>Analysis and Design of a 20-MHz Bandwidth, 50.5-dBm OOB-IIP3, and 5.4-mW TIA for SAW-Less Receivers</title><source>IEEE Electronic Library (IEL)</source><creator>Pini, Giacomo ; Manstretta, Danilo ; Castello, Rinaldo</creator><creatorcontrib>Pini, Giacomo ; Manstretta, Danilo ; Castello, Rinaldo</creatorcontrib><description><![CDATA[A power-efficient transimpedance amplifier with wide channel bandwidth is proposed to meet the stringent linearity requirements of surface acoustic wave-less frequency-division duplexing receivers. A unity-gain loop bandwidth of 1.6 GHz is achieved with low-power dissipation. This was done without using any internal compensation but relying on zeros, both within the operational transconductance amplifier and in the feedback network, to ensure stability across all parameter variations. A simple non-linear analysis methodology is presented that provides important insights, useful for the design optimization. The prototype, implemented in 28-nm CMOS technology, has 14 dB of gain with 20-MHz bandwidth and achieves 21.1-<inline-formula> <tex-math notation="LaTeX">\mu \text{V} </tex-math></inline-formula> in-band noise together with 33 and 50.5-dBm IIP3 at 6 and 100-MHz offset, respectively, while requiring only 5.4 mW. The corresponding filter figure of merit (FOM) of 183.2 dBJ −1 at 100-MHz offset exceeds that of all previous designs. Simulation shows that an even better FOM could be achieved using a larger width (more linear) feedback resistor. Finally, the differential input impedance is less than 33 <inline-formula> <tex-math notation="LaTeX">\Omega </tex-math></inline-formula> at all frequencies.]]></description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2018.2791489</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic noise ; Amplifiers ; Bandwidth ; Bandwidths ; Baseband ; Capacitance ; Capacitors ; CMOS ; Design optimization ; Feedback ; Figure of merit ; frequency-division duplexing (FDD) ; high linearity ; Impedance ; Input impedance ; Linear analysis ; Linearity ; low power ; mobile receivers ; Nonlinear analysis ; Receivers ; Stability analysis ; surface acoustic wave (SAW)-less ; Surface acoustic waves ; Transconductance ; transimpedance amplifier (TIA)</subject><ispartof>IEEE journal of solid-state circuits, 2018-05, Vol.53 (5), p.1468-1480</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7a205d42078f73b90c2807ad7f4fe40024646d498004e57c928421892c03f66f3</citedby><cites>FETCH-LOGICAL-c293t-7a205d42078f73b90c2807ad7f4fe40024646d498004e57c928421892c03f66f3</cites><orcidid>0000-0002-8375-3862 ; 0000-0001-6085-2668 ; 0000-0001-5097-6384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8274962$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids></links><search><creatorcontrib>Pini, Giacomo</creatorcontrib><creatorcontrib>Manstretta, Danilo</creatorcontrib><creatorcontrib>Castello, Rinaldo</creatorcontrib><title>Analysis and Design of a 20-MHz Bandwidth, 50.5-dBm OOB-IIP3, and 5.4-mW TIA for SAW-Less Receivers</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[A power-efficient transimpedance amplifier with wide channel bandwidth is proposed to meet the stringent linearity requirements of surface acoustic wave-less frequency-division duplexing receivers. A unity-gain loop bandwidth of 1.6 GHz is achieved with low-power dissipation. This was done without using any internal compensation but relying on zeros, both within the operational transconductance amplifier and in the feedback network, to ensure stability across all parameter variations. A simple non-linear analysis methodology is presented that provides important insights, useful for the design optimization. The prototype, implemented in 28-nm CMOS technology, has 14 dB of gain with 20-MHz bandwidth and achieves 21.1-<inline-formula> <tex-math notation="LaTeX">\mu \text{V} </tex-math></inline-formula> in-band noise together with 33 and 50.5-dBm IIP3 at 6 and 100-MHz offset, respectively, while requiring only 5.4 mW. The corresponding filter figure of merit (FOM) of 183.2 dBJ −1 at 100-MHz offset exceeds that of all previous designs. Simulation shows that an even better FOM could be achieved using a larger width (more linear) feedback resistor. Finally, the differential input impedance is less than 33 <inline-formula> <tex-math notation="LaTeX">\Omega </tex-math></inline-formula> at all frequencies.]]></description><subject>Acoustic noise</subject><subject>Amplifiers</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Baseband</subject><subject>Capacitance</subject><subject>Capacitors</subject><subject>CMOS</subject><subject>Design optimization</subject><subject>Feedback</subject><subject>Figure of merit</subject><subject>frequency-division duplexing (FDD)</subject><subject>high linearity</subject><subject>Impedance</subject><subject>Input impedance</subject><subject>Linear analysis</subject><subject>Linearity</subject><subject>low power</subject><subject>mobile receivers</subject><subject>Nonlinear analysis</subject><subject>Receivers</subject><subject>Stability analysis</subject><subject>surface acoustic wave (SAW)-less</subject><subject>Surface acoustic waves</subject><subject>Transconductance</subject><subject>transimpedance amplifier (TIA)</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYj-AOOliVe6Tj922x4X_GANBiMYvDXrbqtLgIUWNPjrXYR4mszM804yD0KXFCJKQd88jka9iAFVEZOaCqWPUIvGsSJU8rdj1IJmRTQDOEVnIUybVghFW6hIF_lsG6qA80WJb22oPha4djjHDMhT_wd3m_l3Va4_OziGKCZld46Hwy7Jsmfe-QvFkSDzCR5nKXa1x6N0QgY2BPxiC1t9WR_O0YnLZ8FeHGobvd7fjXt9Mhg-ZL10QAqm-ZrInEFcCgZSOcnfNRRMgcxL6YSzAoCJRCSl0ApA2FgWminBqNKsAO6SxPE2ut7fXfp6tbFhbab1xjf_BcOAN5o417Kh6J4qfB2Ct84sfTXP_dZQMDuXZufS7Fyag8smc7XPVNbaf14xKXTC-C-L1GkQ</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Pini, Giacomo</creator><creator>Manstretta, Danilo</creator><creator>Castello, Rinaldo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8375-3862</orcidid><orcidid>https://orcid.org/0000-0001-6085-2668</orcidid><orcidid>https://orcid.org/0000-0001-5097-6384</orcidid></search><sort><creationdate>20180501</creationdate><title>Analysis and Design of a 20-MHz Bandwidth, 50.5-dBm OOB-IIP3, and 5.4-mW TIA for SAW-Less Receivers</title><author>Pini, Giacomo ; Manstretta, Danilo ; Castello, Rinaldo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7a205d42078f73b90c2807ad7f4fe40024646d498004e57c928421892c03f66f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustic noise</topic><topic>Amplifiers</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Baseband</topic><topic>Capacitance</topic><topic>Capacitors</topic><topic>CMOS</topic><topic>Design optimization</topic><topic>Feedback</topic><topic>Figure of merit</topic><topic>frequency-division duplexing (FDD)</topic><topic>high linearity</topic><topic>Impedance</topic><topic>Input impedance</topic><topic>Linear analysis</topic><topic>Linearity</topic><topic>low power</topic><topic>mobile receivers</topic><topic>Nonlinear analysis</topic><topic>Receivers</topic><topic>Stability analysis</topic><topic>surface acoustic wave (SAW)-less</topic><topic>Surface acoustic waves</topic><topic>Transconductance</topic><topic>transimpedance amplifier (TIA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pini, Giacomo</creatorcontrib><creatorcontrib>Manstretta, Danilo</creatorcontrib><creatorcontrib>Castello, Rinaldo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pini, Giacomo</au><au>Manstretta, Danilo</au><au>Castello, Rinaldo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and Design of a 20-MHz Bandwidth, 50.5-dBm OOB-IIP3, and 5.4-mW TIA for SAW-Less Receivers</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>53</volume><issue>5</issue><spage>1468</spage><epage>1480</epage><pages>1468-1480</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract><![CDATA[A power-efficient transimpedance amplifier with wide channel bandwidth is proposed to meet the stringent linearity requirements of surface acoustic wave-less frequency-division duplexing receivers. A unity-gain loop bandwidth of 1.6 GHz is achieved with low-power dissipation. This was done without using any internal compensation but relying on zeros, both within the operational transconductance amplifier and in the feedback network, to ensure stability across all parameter variations. A simple non-linear analysis methodology is presented that provides important insights, useful for the design optimization. The prototype, implemented in 28-nm CMOS technology, has 14 dB of gain with 20-MHz bandwidth and achieves 21.1-<inline-formula> <tex-math notation="LaTeX">\mu \text{V} </tex-math></inline-formula> in-band noise together with 33 and 50.5-dBm IIP3 at 6 and 100-MHz offset, respectively, while requiring only 5.4 mW. The corresponding filter figure of merit (FOM) of 183.2 dBJ −1 at 100-MHz offset exceeds that of all previous designs. Simulation shows that an even better FOM could be achieved using a larger width (more linear) feedback resistor. Finally, the differential input impedance is less than 33 <inline-formula> <tex-math notation="LaTeX">\Omega </tex-math></inline-formula> at all frequencies.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2018.2791489</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8375-3862</orcidid><orcidid>https://orcid.org/0000-0001-6085-2668</orcidid><orcidid>https://orcid.org/0000-0001-5097-6384</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2018-05, Vol.53 (5), p.1468-1480 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSSC_2018_2791489 |
source | IEEE Electronic Library (IEL) |
subjects | Acoustic noise Amplifiers Bandwidth Bandwidths Baseband Capacitance Capacitors CMOS Design optimization Feedback Figure of merit frequency-division duplexing (FDD) high linearity Impedance Input impedance Linear analysis Linearity low power mobile receivers Nonlinear analysis Receivers Stability analysis surface acoustic wave (SAW)-less Surface acoustic waves Transconductance transimpedance amplifier (TIA) |
title | Analysis and Design of a 20-MHz Bandwidth, 50.5-dBm OOB-IIP3, and 5.4-mW TIA for SAW-Less Receivers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T17%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20Design%20of%20a%2020-MHz%20Bandwidth,%2050.5-dBm%20OOB-IIP3,%20and%205.4-mW%20TIA%20for%20SAW-Less%20Receivers&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Pini,%20Giacomo&rft.date=2018-05-01&rft.volume=53&rft.issue=5&rft.spage=1468&rft.epage=1480&rft.pages=1468-1480&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2018.2791489&rft_dat=%3Cproquest_cross%3E2031103397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2031103397&rft_id=info:pmid/&rft_ieee_id=8274962&rfr_iscdi=true |