A 1 V 103 dB 3rd-Order Audio Continuous-Time \Delta \Sigma ADC With Enhanced Noise Shaping in 65 nm CMOS

As technology scales, integrating high resolution ADCs into high fidelity mixed signal systems becomes challenging in advanced CMOS processes. Cascading integrators to achieve high-order filter structures limits the modulation index and compromises on stability at the expense of added hardware and p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2016-11, Vol.51 (11), p.2625-2638
Hauptverfasser: Leow, Yoon Hwee, Tang, Howard, Sun, Zhuo Chao, Siek, Liter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2638
container_issue 11
container_start_page 2625
container_title IEEE journal of solid-state circuits
container_volume 51
creator Leow, Yoon Hwee
Tang, Howard
Sun, Zhuo Chao
Siek, Liter
description As technology scales, integrating high resolution ADCs into high fidelity mixed signal systems becomes challenging in advanced CMOS processes. Cascading integrators to achieve high-order filter structures limits the modulation index and compromises on stability at the expense of added hardware and power consumption. To optimize the maximum stable amplitude (MSA) to accommodate a larger input dynamic range, the supply rails have to be expanded, which limited technology choices to those of a larger feature size. This work proposes a 25 kHz 3rd-order continuous-time ΔΣ modulator (CTΔΣM) utilizing a 5-bit SAR quantizer, enabling noise coupling (NC) to be possible in a typical nanoscale CMOS 65 nm technology with VDD of 1 V. Mismatches in SAR comparator and DAC array are mitigated with a proposed calibration scheme while CM mismatches are solved by a floating differential charge storage capacitor (FDCSC) coupling method. To allow sufficient time for SAR bit cycling and noise charge feedback settling, 1 Ts excess loop delay (ELD) is compensated with digital differentiation that minimizes both the power and complexity of the auxiliary feedback DAC. The prototype obtained DR/SNR/SNDR of 103.1 dB/100.1 dB/95.2 dB while dissipating 0.8 mW, hence achieving a FoMSNDR and FoMschreier of 0.34 pJ/level and 177.9 dB, respectively.
doi_str_mv 10.1109/JSSC.2016.2593777
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2016_2593777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7546838</ieee_id><sourcerecordid>4231507561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-bd0e8f7c783799af066cb78bffea79a48d1821d2acaa1c90c15a28ae4d0b207a3</originalsourceid><addsrcrecordid>eNpdkD1v2zAQhokgBeKk_QFBlwO6ZJHLIyWRHF0l_QjSepCbdDAg0CQVM7Aoh5SG_vvIcJAh0-GA531x9xByiXSOSNXX27qu5oxiOWeF4kKIEzLDopAZCv7vlMwoRZkpRukZOU_paVrzXOKMbBeAcA9IOdhvwKPNltG6CIvR-h6qPgw-jP2YspXvHKyv3W7QsK79Y6dhcV3Bgx-2cBO2Ohhn4U_vk4N6q_c-PIIPUBYQOqh-L-uP5EOrd8l9ep0X5O_3m1X1M7tb_vhVLe4yw1k5ZBtLnWyFEZILpXRLy9JshNy0rdNC6VxalAwt00ZrNIoaLDST2uWWbhgVml-Qq2PvPvbPo0tD0_lk3G6ng5v-aFAWBZdKCDahX96hT_0Yw3TdRHGOUmGpJgqPlIl9StG1zT76Tsf_DdLm4L45uG8O7ptX91Pm8zHjnXNvvCjyUnLJXwCHv3wX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1833189169</pqid></control><display><type>article</type><title>A 1 V 103 dB 3rd-Order Audio Continuous-Time \Delta \Sigma ADC With Enhanced Noise Shaping in 65 nm CMOS</title><source>IEEE Electronic Library (IEL)</source><creator>Leow, Yoon Hwee ; Tang, Howard ; Sun, Zhuo Chao ; Siek, Liter</creator><creatorcontrib>Leow, Yoon Hwee ; Tang, Howard ; Sun, Zhuo Chao ; Siek, Liter</creatorcontrib><description>As technology scales, integrating high resolution ADCs into high fidelity mixed signal systems becomes challenging in advanced CMOS processes. Cascading integrators to achieve high-order filter structures limits the modulation index and compromises on stability at the expense of added hardware and power consumption. To optimize the maximum stable amplitude (MSA) to accommodate a larger input dynamic range, the supply rails have to be expanded, which limited technology choices to those of a larger feature size. This work proposes a 25 kHz 3rd-order continuous-time ΔΣ modulator (CTΔΣM) utilizing a 5-bit SAR quantizer, enabling noise coupling (NC) to be possible in a typical nanoscale CMOS 65 nm technology with VDD of 1 V. Mismatches in SAR comparator and DAC array are mitigated with a proposed calibration scheme while CM mismatches are solved by a floating differential charge storage capacitor (FDCSC) coupling method. To allow sufficient time for SAR bit cycling and noise charge feedback settling, 1 Ts excess loop delay (ELD) is compensated with digital differentiation that minimizes both the power and complexity of the auxiliary feedback DAC. The prototype obtained DR/SNR/SNDR of 103.1 dB/100.1 dB/95.2 dB while dissipating 0.8 mW, hence achieving a FoMSNDR and FoMschreier of 0.34 pJ/level and 177.9 dB, respectively.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2016.2593777</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitors ; Charge ; CMOS ; CMOS integrated circuits ; Continuous-time ; Coupling ; Delta-Sigma ; Differentiation ; Digital ; Feedback ; Floating structures ; low voltage ; Modulation ; Noise ; Noise shaping ; noise-coupled ; NTF enhancement ; Quantization (signal) ; Signal to noise ratio ; success approximation ; Transfer functions</subject><ispartof>IEEE journal of solid-state circuits, 2016-11, Vol.51 (11), p.2625-2638</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-bd0e8f7c783799af066cb78bffea79a48d1821d2acaa1c90c15a28ae4d0b207a3</citedby><cites>FETCH-LOGICAL-c326t-bd0e8f7c783799af066cb78bffea79a48d1821d2acaa1c90c15a28ae4d0b207a3</cites><orcidid>0000-0002-5784-535X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7546838$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7546838$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Leow, Yoon Hwee</creatorcontrib><creatorcontrib>Tang, Howard</creatorcontrib><creatorcontrib>Sun, Zhuo Chao</creatorcontrib><creatorcontrib>Siek, Liter</creatorcontrib><title>A 1 V 103 dB 3rd-Order Audio Continuous-Time \Delta \Sigma ADC With Enhanced Noise Shaping in 65 nm CMOS</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>As technology scales, integrating high resolution ADCs into high fidelity mixed signal systems becomes challenging in advanced CMOS processes. Cascading integrators to achieve high-order filter structures limits the modulation index and compromises on stability at the expense of added hardware and power consumption. To optimize the maximum stable amplitude (MSA) to accommodate a larger input dynamic range, the supply rails have to be expanded, which limited technology choices to those of a larger feature size. This work proposes a 25 kHz 3rd-order continuous-time ΔΣ modulator (CTΔΣM) utilizing a 5-bit SAR quantizer, enabling noise coupling (NC) to be possible in a typical nanoscale CMOS 65 nm technology with VDD of 1 V. Mismatches in SAR comparator and DAC array are mitigated with a proposed calibration scheme while CM mismatches are solved by a floating differential charge storage capacitor (FDCSC) coupling method. To allow sufficient time for SAR bit cycling and noise charge feedback settling, 1 Ts excess loop delay (ELD) is compensated with digital differentiation that minimizes both the power and complexity of the auxiliary feedback DAC. The prototype obtained DR/SNR/SNDR of 103.1 dB/100.1 dB/95.2 dB while dissipating 0.8 mW, hence achieving a FoMSNDR and FoMschreier of 0.34 pJ/level and 177.9 dB, respectively.</description><subject>Capacitors</subject><subject>Charge</subject><subject>CMOS</subject><subject>CMOS integrated circuits</subject><subject>Continuous-time</subject><subject>Coupling</subject><subject>Delta-Sigma</subject><subject>Differentiation</subject><subject>Digital</subject><subject>Feedback</subject><subject>Floating structures</subject><subject>low voltage</subject><subject>Modulation</subject><subject>Noise</subject><subject>Noise shaping</subject><subject>noise-coupled</subject><subject>NTF enhancement</subject><subject>Quantization (signal)</subject><subject>Signal to noise ratio</subject><subject>success approximation</subject><subject>Transfer functions</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1v2zAQhokgBeKk_QFBlwO6ZJHLIyWRHF0l_QjSepCbdDAg0CQVM7Aoh5SG_vvIcJAh0-GA531x9xByiXSOSNXX27qu5oxiOWeF4kKIEzLDopAZCv7vlMwoRZkpRukZOU_paVrzXOKMbBeAcA9IOdhvwKPNltG6CIvR-h6qPgw-jP2YspXvHKyv3W7QsK79Y6dhcV3Bgx-2cBO2Ohhn4U_vk4N6q_c-PIIPUBYQOqh-L-uP5EOrd8l9ep0X5O_3m1X1M7tb_vhVLe4yw1k5ZBtLnWyFEZILpXRLy9JshNy0rdNC6VxalAwt00ZrNIoaLDST2uWWbhgVml-Qq2PvPvbPo0tD0_lk3G6ng5v-aFAWBZdKCDahX96hT_0Yw3TdRHGOUmGpJgqPlIl9StG1zT76Tsf_DdLm4L45uG8O7ptX91Pm8zHjnXNvvCjyUnLJXwCHv3wX</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Leow, Yoon Hwee</creator><creator>Tang, Howard</creator><creator>Sun, Zhuo Chao</creator><creator>Siek, Liter</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-5784-535X</orcidid></search><sort><creationdate>201611</creationdate><title>A 1 V 103 dB 3rd-Order Audio Continuous-Time \Delta \Sigma ADC With Enhanced Noise Shaping in 65 nm CMOS</title><author>Leow, Yoon Hwee ; Tang, Howard ; Sun, Zhuo Chao ; Siek, Liter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-bd0e8f7c783799af066cb78bffea79a48d1821d2acaa1c90c15a28ae4d0b207a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Capacitors</topic><topic>Charge</topic><topic>CMOS</topic><topic>CMOS integrated circuits</topic><topic>Continuous-time</topic><topic>Coupling</topic><topic>Delta-Sigma</topic><topic>Differentiation</topic><topic>Digital</topic><topic>Feedback</topic><topic>Floating structures</topic><topic>low voltage</topic><topic>Modulation</topic><topic>Noise</topic><topic>Noise shaping</topic><topic>noise-coupled</topic><topic>NTF enhancement</topic><topic>Quantization (signal)</topic><topic>Signal to noise ratio</topic><topic>success approximation</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leow, Yoon Hwee</creatorcontrib><creatorcontrib>Tang, Howard</creatorcontrib><creatorcontrib>Sun, Zhuo Chao</creatorcontrib><creatorcontrib>Siek, Liter</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leow, Yoon Hwee</au><au>Tang, Howard</au><au>Sun, Zhuo Chao</au><au>Siek, Liter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 1 V 103 dB 3rd-Order Audio Continuous-Time \Delta \Sigma ADC With Enhanced Noise Shaping in 65 nm CMOS</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2016-11</date><risdate>2016</risdate><volume>51</volume><issue>11</issue><spage>2625</spage><epage>2638</epage><pages>2625-2638</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>As technology scales, integrating high resolution ADCs into high fidelity mixed signal systems becomes challenging in advanced CMOS processes. Cascading integrators to achieve high-order filter structures limits the modulation index and compromises on stability at the expense of added hardware and power consumption. To optimize the maximum stable amplitude (MSA) to accommodate a larger input dynamic range, the supply rails have to be expanded, which limited technology choices to those of a larger feature size. This work proposes a 25 kHz 3rd-order continuous-time ΔΣ modulator (CTΔΣM) utilizing a 5-bit SAR quantizer, enabling noise coupling (NC) to be possible in a typical nanoscale CMOS 65 nm technology with VDD of 1 V. Mismatches in SAR comparator and DAC array are mitigated with a proposed calibration scheme while CM mismatches are solved by a floating differential charge storage capacitor (FDCSC) coupling method. To allow sufficient time for SAR bit cycling and noise charge feedback settling, 1 Ts excess loop delay (ELD) is compensated with digital differentiation that minimizes both the power and complexity of the auxiliary feedback DAC. The prototype obtained DR/SNR/SNDR of 103.1 dB/100.1 dB/95.2 dB while dissipating 0.8 mW, hence achieving a FoMSNDR and FoMschreier of 0.34 pJ/level and 177.9 dB, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2016.2593777</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5784-535X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2016-11, Vol.51 (11), p.2625-2638
issn 0018-9200
1558-173X
language eng
recordid cdi_crossref_primary_10_1109_JSSC_2016_2593777
source IEEE Electronic Library (IEL)
subjects Capacitors
Charge
CMOS
CMOS integrated circuits
Continuous-time
Coupling
Delta-Sigma
Differentiation
Digital
Feedback
Floating structures
low voltage
Modulation
Noise
Noise shaping
noise-coupled
NTF enhancement
Quantization (signal)
Signal to noise ratio
success approximation
Transfer functions
title A 1 V 103 dB 3rd-Order Audio Continuous-Time \Delta \Sigma ADC With Enhanced Noise Shaping in 65 nm CMOS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%201%20V%20103%20dB%203rd-Order%20Audio%20Continuous-Time%20%5CDelta%20%5CSigma%20ADC%20With%20Enhanced%20Noise%20Shaping%20in%2065%20nm%20CMOS&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Leow,%20Yoon%20Hwee&rft.date=2016-11&rft.volume=51&rft.issue=11&rft.spage=2625&rft.epage=2638&rft.pages=2625-2638&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2016.2593777&rft_dat=%3Cproquest_RIE%3E4231507561%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1833189169&rft_id=info:pmid/&rft_ieee_id=7546838&rfr_iscdi=true