A 1 V 103 dB 3rd-Order Audio Continuous-Time \Delta \Sigma ADC With Enhanced Noise Shaping in 65 nm CMOS
As technology scales, integrating high resolution ADCs into high fidelity mixed signal systems becomes challenging in advanced CMOS processes. Cascading integrators to achieve high-order filter structures limits the modulation index and compromises on stability at the expense of added hardware and p...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2016-11, Vol.51 (11), p.2625-2638 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2638 |
---|---|
container_issue | 11 |
container_start_page | 2625 |
container_title | IEEE journal of solid-state circuits |
container_volume | 51 |
creator | Leow, Yoon Hwee Tang, Howard Sun, Zhuo Chao Siek, Liter |
description | As technology scales, integrating high resolution ADCs into high fidelity mixed signal systems becomes challenging in advanced CMOS processes. Cascading integrators to achieve high-order filter structures limits the modulation index and compromises on stability at the expense of added hardware and power consumption. To optimize the maximum stable amplitude (MSA) to accommodate a larger input dynamic range, the supply rails have to be expanded, which limited technology choices to those of a larger feature size. This work proposes a 25 kHz 3rd-order continuous-time ΔΣ modulator (CTΔΣM) utilizing a 5-bit SAR quantizer, enabling noise coupling (NC) to be possible in a typical nanoscale CMOS 65 nm technology with VDD of 1 V. Mismatches in SAR comparator and DAC array are mitigated with a proposed calibration scheme while CM mismatches are solved by a floating differential charge storage capacitor (FDCSC) coupling method. To allow sufficient time for SAR bit cycling and noise charge feedback settling, 1 Ts excess loop delay (ELD) is compensated with digital differentiation that minimizes both the power and complexity of the auxiliary feedback DAC. The prototype obtained DR/SNR/SNDR of 103.1 dB/100.1 dB/95.2 dB while dissipating 0.8 mW, hence achieving a FoMSNDR and FoMschreier of 0.34 pJ/level and 177.9 dB, respectively. |
doi_str_mv | 10.1109/JSSC.2016.2593777 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2016_2593777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7546838</ieee_id><sourcerecordid>4231507561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-bd0e8f7c783799af066cb78bffea79a48d1821d2acaa1c90c15a28ae4d0b207a3</originalsourceid><addsrcrecordid>eNpdkD1v2zAQhokgBeKk_QFBlwO6ZJHLIyWRHF0l_QjSepCbdDAg0CQVM7Aoh5SG_vvIcJAh0-GA531x9xByiXSOSNXX27qu5oxiOWeF4kKIEzLDopAZCv7vlMwoRZkpRukZOU_paVrzXOKMbBeAcA9IOdhvwKPNltG6CIvR-h6qPgw-jP2YspXvHKyv3W7QsK79Y6dhcV3Bgx-2cBO2Ohhn4U_vk4N6q_c-PIIPUBYQOqh-L-uP5EOrd8l9ep0X5O_3m1X1M7tb_vhVLe4yw1k5ZBtLnWyFEZILpXRLy9JshNy0rdNC6VxalAwt00ZrNIoaLDST2uWWbhgVml-Qq2PvPvbPo0tD0_lk3G6ng5v-aFAWBZdKCDahX96hT_0Yw3TdRHGOUmGpJgqPlIl9StG1zT76Tsf_DdLm4L45uG8O7ptX91Pm8zHjnXNvvCjyUnLJXwCHv3wX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1833189169</pqid></control><display><type>article</type><title>A 1 V 103 dB 3rd-Order Audio Continuous-Time \Delta \Sigma ADC With Enhanced Noise Shaping in 65 nm CMOS</title><source>IEEE Electronic Library (IEL)</source><creator>Leow, Yoon Hwee ; Tang, Howard ; Sun, Zhuo Chao ; Siek, Liter</creator><creatorcontrib>Leow, Yoon Hwee ; Tang, Howard ; Sun, Zhuo Chao ; Siek, Liter</creatorcontrib><description>As technology scales, integrating high resolution ADCs into high fidelity mixed signal systems becomes challenging in advanced CMOS processes. Cascading integrators to achieve high-order filter structures limits the modulation index and compromises on stability at the expense of added hardware and power consumption. To optimize the maximum stable amplitude (MSA) to accommodate a larger input dynamic range, the supply rails have to be expanded, which limited technology choices to those of a larger feature size. This work proposes a 25 kHz 3rd-order continuous-time ΔΣ modulator (CTΔΣM) utilizing a 5-bit SAR quantizer, enabling noise coupling (NC) to be possible in a typical nanoscale CMOS 65 nm technology with VDD of 1 V. Mismatches in SAR comparator and DAC array are mitigated with a proposed calibration scheme while CM mismatches are solved by a floating differential charge storage capacitor (FDCSC) coupling method. To allow sufficient time for SAR bit cycling and noise charge feedback settling, 1 Ts excess loop delay (ELD) is compensated with digital differentiation that minimizes both the power and complexity of the auxiliary feedback DAC. The prototype obtained DR/SNR/SNDR of 103.1 dB/100.1 dB/95.2 dB while dissipating 0.8 mW, hence achieving a FoMSNDR and FoMschreier of 0.34 pJ/level and 177.9 dB, respectively.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2016.2593777</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitors ; Charge ; CMOS ; CMOS integrated circuits ; Continuous-time ; Coupling ; Delta-Sigma ; Differentiation ; Digital ; Feedback ; Floating structures ; low voltage ; Modulation ; Noise ; Noise shaping ; noise-coupled ; NTF enhancement ; Quantization (signal) ; Signal to noise ratio ; success approximation ; Transfer functions</subject><ispartof>IEEE journal of solid-state circuits, 2016-11, Vol.51 (11), p.2625-2638</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-bd0e8f7c783799af066cb78bffea79a48d1821d2acaa1c90c15a28ae4d0b207a3</citedby><cites>FETCH-LOGICAL-c326t-bd0e8f7c783799af066cb78bffea79a48d1821d2acaa1c90c15a28ae4d0b207a3</cites><orcidid>0000-0002-5784-535X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7546838$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7546838$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Leow, Yoon Hwee</creatorcontrib><creatorcontrib>Tang, Howard</creatorcontrib><creatorcontrib>Sun, Zhuo Chao</creatorcontrib><creatorcontrib>Siek, Liter</creatorcontrib><title>A 1 V 103 dB 3rd-Order Audio Continuous-Time \Delta \Sigma ADC With Enhanced Noise Shaping in 65 nm CMOS</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>As technology scales, integrating high resolution ADCs into high fidelity mixed signal systems becomes challenging in advanced CMOS processes. Cascading integrators to achieve high-order filter structures limits the modulation index and compromises on stability at the expense of added hardware and power consumption. To optimize the maximum stable amplitude (MSA) to accommodate a larger input dynamic range, the supply rails have to be expanded, which limited technology choices to those of a larger feature size. This work proposes a 25 kHz 3rd-order continuous-time ΔΣ modulator (CTΔΣM) utilizing a 5-bit SAR quantizer, enabling noise coupling (NC) to be possible in a typical nanoscale CMOS 65 nm technology with VDD of 1 V. Mismatches in SAR comparator and DAC array are mitigated with a proposed calibration scheme while CM mismatches are solved by a floating differential charge storage capacitor (FDCSC) coupling method. To allow sufficient time for SAR bit cycling and noise charge feedback settling, 1 Ts excess loop delay (ELD) is compensated with digital differentiation that minimizes both the power and complexity of the auxiliary feedback DAC. The prototype obtained DR/SNR/SNDR of 103.1 dB/100.1 dB/95.2 dB while dissipating 0.8 mW, hence achieving a FoMSNDR and FoMschreier of 0.34 pJ/level and 177.9 dB, respectively.</description><subject>Capacitors</subject><subject>Charge</subject><subject>CMOS</subject><subject>CMOS integrated circuits</subject><subject>Continuous-time</subject><subject>Coupling</subject><subject>Delta-Sigma</subject><subject>Differentiation</subject><subject>Digital</subject><subject>Feedback</subject><subject>Floating structures</subject><subject>low voltage</subject><subject>Modulation</subject><subject>Noise</subject><subject>Noise shaping</subject><subject>noise-coupled</subject><subject>NTF enhancement</subject><subject>Quantization (signal)</subject><subject>Signal to noise ratio</subject><subject>success approximation</subject><subject>Transfer functions</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1v2zAQhokgBeKk_QFBlwO6ZJHLIyWRHF0l_QjSepCbdDAg0CQVM7Aoh5SG_vvIcJAh0-GA531x9xByiXSOSNXX27qu5oxiOWeF4kKIEzLDopAZCv7vlMwoRZkpRukZOU_paVrzXOKMbBeAcA9IOdhvwKPNltG6CIvR-h6qPgw-jP2YspXvHKyv3W7QsK79Y6dhcV3Bgx-2cBO2Ohhn4U_vk4N6q_c-PIIPUBYQOqh-L-uP5EOrd8l9ep0X5O_3m1X1M7tb_vhVLe4yw1k5ZBtLnWyFEZILpXRLy9JshNy0rdNC6VxalAwt00ZrNIoaLDST2uWWbhgVml-Qq2PvPvbPo0tD0_lk3G6ng5v-aFAWBZdKCDahX96hT_0Yw3TdRHGOUmGpJgqPlIl9StG1zT76Tsf_DdLm4L45uG8O7ptX91Pm8zHjnXNvvCjyUnLJXwCHv3wX</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Leow, Yoon Hwee</creator><creator>Tang, Howard</creator><creator>Sun, Zhuo Chao</creator><creator>Siek, Liter</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-5784-535X</orcidid></search><sort><creationdate>201611</creationdate><title>A 1 V 103 dB 3rd-Order Audio Continuous-Time \Delta \Sigma ADC With Enhanced Noise Shaping in 65 nm CMOS</title><author>Leow, Yoon Hwee ; Tang, Howard ; Sun, Zhuo Chao ; Siek, Liter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-bd0e8f7c783799af066cb78bffea79a48d1821d2acaa1c90c15a28ae4d0b207a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Capacitors</topic><topic>Charge</topic><topic>CMOS</topic><topic>CMOS integrated circuits</topic><topic>Continuous-time</topic><topic>Coupling</topic><topic>Delta-Sigma</topic><topic>Differentiation</topic><topic>Digital</topic><topic>Feedback</topic><topic>Floating structures</topic><topic>low voltage</topic><topic>Modulation</topic><topic>Noise</topic><topic>Noise shaping</topic><topic>noise-coupled</topic><topic>NTF enhancement</topic><topic>Quantization (signal)</topic><topic>Signal to noise ratio</topic><topic>success approximation</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leow, Yoon Hwee</creatorcontrib><creatorcontrib>Tang, Howard</creatorcontrib><creatorcontrib>Sun, Zhuo Chao</creatorcontrib><creatorcontrib>Siek, Liter</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leow, Yoon Hwee</au><au>Tang, Howard</au><au>Sun, Zhuo Chao</au><au>Siek, Liter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 1 V 103 dB 3rd-Order Audio Continuous-Time \Delta \Sigma ADC With Enhanced Noise Shaping in 65 nm CMOS</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2016-11</date><risdate>2016</risdate><volume>51</volume><issue>11</issue><spage>2625</spage><epage>2638</epage><pages>2625-2638</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>As technology scales, integrating high resolution ADCs into high fidelity mixed signal systems becomes challenging in advanced CMOS processes. Cascading integrators to achieve high-order filter structures limits the modulation index and compromises on stability at the expense of added hardware and power consumption. To optimize the maximum stable amplitude (MSA) to accommodate a larger input dynamic range, the supply rails have to be expanded, which limited technology choices to those of a larger feature size. This work proposes a 25 kHz 3rd-order continuous-time ΔΣ modulator (CTΔΣM) utilizing a 5-bit SAR quantizer, enabling noise coupling (NC) to be possible in a typical nanoscale CMOS 65 nm technology with VDD of 1 V. Mismatches in SAR comparator and DAC array are mitigated with a proposed calibration scheme while CM mismatches are solved by a floating differential charge storage capacitor (FDCSC) coupling method. To allow sufficient time for SAR bit cycling and noise charge feedback settling, 1 Ts excess loop delay (ELD) is compensated with digital differentiation that minimizes both the power and complexity of the auxiliary feedback DAC. The prototype obtained DR/SNR/SNDR of 103.1 dB/100.1 dB/95.2 dB while dissipating 0.8 mW, hence achieving a FoMSNDR and FoMschreier of 0.34 pJ/level and 177.9 dB, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2016.2593777</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5784-535X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2016-11, Vol.51 (11), p.2625-2638 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSSC_2016_2593777 |
source | IEEE Electronic Library (IEL) |
subjects | Capacitors Charge CMOS CMOS integrated circuits Continuous-time Coupling Delta-Sigma Differentiation Digital Feedback Floating structures low voltage Modulation Noise Noise shaping noise-coupled NTF enhancement Quantization (signal) Signal to noise ratio success approximation Transfer functions |
title | A 1 V 103 dB 3rd-Order Audio Continuous-Time \Delta \Sigma ADC With Enhanced Noise Shaping in 65 nm CMOS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%201%20V%20103%20dB%203rd-Order%20Audio%20Continuous-Time%20%5CDelta%20%5CSigma%20ADC%20With%20Enhanced%20Noise%20Shaping%20in%2065%20nm%20CMOS&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Leow,%20Yoon%20Hwee&rft.date=2016-11&rft.volume=51&rft.issue=11&rft.spage=2625&rft.epage=2638&rft.pages=2625-2638&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2016.2593777&rft_dat=%3Cproquest_RIE%3E4231507561%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1833189169&rft_id=info:pmid/&rft_ieee_id=7546838&rfr_iscdi=true |