An X-Band Radar Transceiver MMIC with Bandwidth Reduction in 0.13 µm SiGe Technology
This paper presents an X-band chirp radar transceiver with bandwidth reduction for range detection. The radar transceiver includes a super-heterodyne receiver including an ADC, a direct-digital synthesizer (DDS) based transmitter and a phase-locked loop (PLL) synthesizer. In a modified Weaver archit...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2014-09, Vol.49 (9), p.1905-1915 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1915 |
---|---|
container_issue | 9 |
container_start_page | 1905 |
container_title | IEEE journal of solid-state circuits |
container_volume | 49 |
creator | Jianjun Yu Feng Zhao Cali, Joseph Dai, Fa Foster Desheng Ma Xueyang Geng Yuehai Jin Yuan Yao Xin Jin Irwin, J. David Jaeger, Richard C. |
description | This paper presents an X-band chirp radar transceiver with bandwidth reduction for range detection. The radar transceiver includes a super-heterodyne receiver including an ADC, a direct-digital synthesizer (DDS) based transmitter and a phase-locked loop (PLL) synthesizer. In a modified Weaver architecture, the down-converted baseband signal is further mixed with another chirp signal through stretch processing. The resulting waveform bandwidth is greatly reduced and thus relaxes the power and bandwidth requirements of the on-chip ADC. Therefore, the proposed radar transceiver achieves power and bandwidth reductions without degrading its range resolution. The radar-on-chip (RoC) MMIC was implemented in a 0.13 μm SiGe technology with die area of 3.5 × 2.5 mm 2 . With a 2.2 V supply for analog/RF circuits and a 1.5 V supply for the digital portion, the chip consumes 326 mW in the receive mode and 333 mW in the transmit mode, respectively. |
doi_str_mv | 10.1109/JSSC.2014.2315650 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2014_2315650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6807831</ieee_id><sourcerecordid>3415125141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1381-6ba7cc7454789d43e6c510dc1e797649af308b113889a4c9f392cb4538cf3fdd3</originalsourceid><addsrcrecordid>eNo9kM9OAjEQhxujiYg-gPHSxPNiZ9vdtkckihiICX8Sbk1pu1ICu9gFCQ_mC_hkdgPxNDPJ95vJfAjdA-kAEPn0Ppn0OikB1kkpZHlGLlALskwkwOn8ErUIAZHIlJBrdFPXqzgyJqCFZt0Sz5NnXVo81lYHPA26rI3z3y7g0WjQwwe_W-IGOHgbu7Gze7PzVYl9ieNxin9_Nnji-w5PnVmW1br6PN6iq0Kva3d3rm00e32Z9t6S4Ud_0OsOEwNUQJIvNDeGs4xxIS2jLjcZEGvAcclzJnVBiVhAZIXUzMiCytQsWEaFKWhhLW2jx9Pebai-9q7eqVW1D2U8qeLzuUxTySFScKJMqOo6uEJtg9_ocFRAVGNPNfZUY0-d7cXMwynjnXP_fC4IFxToH0ZCaQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1556922971</pqid></control><display><type>article</type><title>An X-Band Radar Transceiver MMIC with Bandwidth Reduction in 0.13 µm SiGe Technology</title><source>IEEE Electronic Library (IEL)</source><creator>Jianjun Yu ; Feng Zhao ; Cali, Joseph ; Dai, Fa Foster ; Desheng Ma ; Xueyang Geng ; Yuehai Jin ; Yuan Yao ; Xin Jin ; Irwin, J. David ; Jaeger, Richard C.</creator><creatorcontrib>Jianjun Yu ; Feng Zhao ; Cali, Joseph ; Dai, Fa Foster ; Desheng Ma ; Xueyang Geng ; Yuehai Jin ; Yuan Yao ; Xin Jin ; Irwin, J. David ; Jaeger, Richard C.</creatorcontrib><description>This paper presents an X-band chirp radar transceiver with bandwidth reduction for range detection. The radar transceiver includes a super-heterodyne receiver including an ADC, a direct-digital synthesizer (DDS) based transmitter and a phase-locked loop (PLL) synthesizer. In a modified Weaver architecture, the down-converted baseband signal is further mixed with another chirp signal through stretch processing. The resulting waveform bandwidth is greatly reduced and thus relaxes the power and bandwidth requirements of the on-chip ADC. Therefore, the proposed radar transceiver achieves power and bandwidth reductions without degrading its range resolution. The radar-on-chip (RoC) MMIC was implemented in a 0.13 μm SiGe technology with die area of 3.5 × 2.5 mm 2 . With a 2.2 V supply for analog/RF circuits and a 1.5 V supply for the digital portion, the chip consumes 326 mW in the receive mode and 333 mW in the transmit mode, respectively.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2014.2315650</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bandwidth ; Baseband ; Chirp ; DAC ; DDS ; PLL ; Radar ; Radio frequency ; receiver ; Receivers ; SiGe ; stretch processing ; Transceivers ; transmitter</subject><ispartof>IEEE journal of solid-state circuits, 2014-09, Vol.49 (9), p.1905-1915</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1381-6ba7cc7454789d43e6c510dc1e797649af308b113889a4c9f392cb4538cf3fdd3</citedby><cites>FETCH-LOGICAL-c1381-6ba7cc7454789d43e6c510dc1e797649af308b113889a4c9f392cb4538cf3fdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6807831$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6807831$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jianjun Yu</creatorcontrib><creatorcontrib>Feng Zhao</creatorcontrib><creatorcontrib>Cali, Joseph</creatorcontrib><creatorcontrib>Dai, Fa Foster</creatorcontrib><creatorcontrib>Desheng Ma</creatorcontrib><creatorcontrib>Xueyang Geng</creatorcontrib><creatorcontrib>Yuehai Jin</creatorcontrib><creatorcontrib>Yuan Yao</creatorcontrib><creatorcontrib>Xin Jin</creatorcontrib><creatorcontrib>Irwin, J. David</creatorcontrib><creatorcontrib>Jaeger, Richard C.</creatorcontrib><title>An X-Band Radar Transceiver MMIC with Bandwidth Reduction in 0.13 µm SiGe Technology</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>This paper presents an X-band chirp radar transceiver with bandwidth reduction for range detection. The radar transceiver includes a super-heterodyne receiver including an ADC, a direct-digital synthesizer (DDS) based transmitter and a phase-locked loop (PLL) synthesizer. In a modified Weaver architecture, the down-converted baseband signal is further mixed with another chirp signal through stretch processing. The resulting waveform bandwidth is greatly reduced and thus relaxes the power and bandwidth requirements of the on-chip ADC. Therefore, the proposed radar transceiver achieves power and bandwidth reductions without degrading its range resolution. The radar-on-chip (RoC) MMIC was implemented in a 0.13 μm SiGe technology with die area of 3.5 × 2.5 mm 2 . With a 2.2 V supply for analog/RF circuits and a 1.5 V supply for the digital portion, the chip consumes 326 mW in the receive mode and 333 mW in the transmit mode, respectively.</description><subject>Bandwidth</subject><subject>Baseband</subject><subject>Chirp</subject><subject>DAC</subject><subject>DDS</subject><subject>PLL</subject><subject>Radar</subject><subject>Radio frequency</subject><subject>receiver</subject><subject>Receivers</subject><subject>SiGe</subject><subject>stretch processing</subject><subject>Transceivers</subject><subject>transmitter</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9OAjEQhxujiYg-gPHSxPNiZ9vdtkckihiICX8Sbk1pu1ICu9gFCQ_mC_hkdgPxNDPJ95vJfAjdA-kAEPn0Ppn0OikB1kkpZHlGLlALskwkwOn8ErUIAZHIlJBrdFPXqzgyJqCFZt0Sz5NnXVo81lYHPA26rI3z3y7g0WjQwwe_W-IGOHgbu7Gze7PzVYl9ieNxin9_Nnji-w5PnVmW1br6PN6iq0Kva3d3rm00e32Z9t6S4Ud_0OsOEwNUQJIvNDeGs4xxIS2jLjcZEGvAcclzJnVBiVhAZIXUzMiCytQsWEaFKWhhLW2jx9Pebai-9q7eqVW1D2U8qeLzuUxTySFScKJMqOo6uEJtg9_ocFRAVGNPNfZUY0-d7cXMwynjnXP_fC4IFxToH0ZCaQ0</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Jianjun Yu</creator><creator>Feng Zhao</creator><creator>Cali, Joseph</creator><creator>Dai, Fa Foster</creator><creator>Desheng Ma</creator><creator>Xueyang Geng</creator><creator>Yuehai Jin</creator><creator>Yuan Yao</creator><creator>Xin Jin</creator><creator>Irwin, J. David</creator><creator>Jaeger, Richard C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201409</creationdate><title>An X-Band Radar Transceiver MMIC with Bandwidth Reduction in 0.13 µm SiGe Technology</title><author>Jianjun Yu ; Feng Zhao ; Cali, Joseph ; Dai, Fa Foster ; Desheng Ma ; Xueyang Geng ; Yuehai Jin ; Yuan Yao ; Xin Jin ; Irwin, J. David ; Jaeger, Richard C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1381-6ba7cc7454789d43e6c510dc1e797649af308b113889a4c9f392cb4538cf3fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bandwidth</topic><topic>Baseband</topic><topic>Chirp</topic><topic>DAC</topic><topic>DDS</topic><topic>PLL</topic><topic>Radar</topic><topic>Radio frequency</topic><topic>receiver</topic><topic>Receivers</topic><topic>SiGe</topic><topic>stretch processing</topic><topic>Transceivers</topic><topic>transmitter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jianjun Yu</creatorcontrib><creatorcontrib>Feng Zhao</creatorcontrib><creatorcontrib>Cali, Joseph</creatorcontrib><creatorcontrib>Dai, Fa Foster</creatorcontrib><creatorcontrib>Desheng Ma</creatorcontrib><creatorcontrib>Xueyang Geng</creatorcontrib><creatorcontrib>Yuehai Jin</creatorcontrib><creatorcontrib>Yuan Yao</creatorcontrib><creatorcontrib>Xin Jin</creatorcontrib><creatorcontrib>Irwin, J. David</creatorcontrib><creatorcontrib>Jaeger, Richard C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jianjun Yu</au><au>Feng Zhao</au><au>Cali, Joseph</au><au>Dai, Fa Foster</au><au>Desheng Ma</au><au>Xueyang Geng</au><au>Yuehai Jin</au><au>Yuan Yao</au><au>Xin Jin</au><au>Irwin, J. David</au><au>Jaeger, Richard C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An X-Band Radar Transceiver MMIC with Bandwidth Reduction in 0.13 µm SiGe Technology</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2014-09</date><risdate>2014</risdate><volume>49</volume><issue>9</issue><spage>1905</spage><epage>1915</epage><pages>1905-1915</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>This paper presents an X-band chirp radar transceiver with bandwidth reduction for range detection. The radar transceiver includes a super-heterodyne receiver including an ADC, a direct-digital synthesizer (DDS) based transmitter and a phase-locked loop (PLL) synthesizer. In a modified Weaver architecture, the down-converted baseband signal is further mixed with another chirp signal through stretch processing. The resulting waveform bandwidth is greatly reduced and thus relaxes the power and bandwidth requirements of the on-chip ADC. Therefore, the proposed radar transceiver achieves power and bandwidth reductions without degrading its range resolution. The radar-on-chip (RoC) MMIC was implemented in a 0.13 μm SiGe technology with die area of 3.5 × 2.5 mm 2 . With a 2.2 V supply for analog/RF circuits and a 1.5 V supply for the digital portion, the chip consumes 326 mW in the receive mode and 333 mW in the transmit mode, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2014.2315650</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2014-09, Vol.49 (9), p.1905-1915 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSSC_2014_2315650 |
source | IEEE Electronic Library (IEL) |
subjects | Bandwidth Baseband Chirp DAC DDS PLL Radar Radio frequency receiver Receivers SiGe stretch processing Transceivers transmitter |
title | An X-Band Radar Transceiver MMIC with Bandwidth Reduction in 0.13 µm SiGe Technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A35%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20X-Band%20Radar%20Transceiver%20MMIC%20with%20Bandwidth%20Reduction%20in%200.13%20%C2%B5m%20SiGe%20Technology&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Jianjun%20Yu&rft.date=2014-09&rft.volume=49&rft.issue=9&rft.spage=1905&rft.epage=1915&rft.pages=1905-1915&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2014.2315650&rft_dat=%3Cproquest_RIE%3E3415125141%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1556922971&rft_id=info:pmid/&rft_ieee_id=6807831&rfr_iscdi=true |