A 250 mV 8 kb 40 nm Ultra-Low Power 9T Supply Feedback SRAM (SF-SRAM)

Low voltage operation of digital circuits continues to be an attractive option for aggressive power reduction. As standard SRAM bitcells are limited to operation in the strong-inversion regimes due to process variations and local mismatch, the development of specially designed SRAMs for low voltage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2011-11, Vol.46 (11), p.2713-2726
Hauptverfasser: Teman, A., Pergament, L., Cohen, O., Fish, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2726
container_issue 11
container_start_page 2713
container_title IEEE journal of solid-state circuits
container_volume 46
creator Teman, A.
Pergament, L.
Cohen, O.
Fish, A.
description Low voltage operation of digital circuits continues to be an attractive option for aggressive power reduction. As standard SRAM bitcells are limited to operation in the strong-inversion regimes due to process variations and local mismatch, the development of specially designed SRAMs for low voltage operation has become popular in recent years. In this paper, we present a novel 9T bitcell, implementing a Supply Feedback concept to internally weaken the pull-up current during write cycles and thus enable low-voltage write operations. As opposed to the majority of existing solutions, this is achieved without the need for additional peripheral circuits and techniques. The proposed bitcell is fully functional under global and local variations at voltages from 250 mV to 1.1 V. In addition, the proposed cell presents a low-leakage state reducing power up to 60%, as compared to an identically supplied 8T bitcell. An 8 kbit SF-SRAM array was implemented and fabricated in a low-power 40 nm process, showing full functionality and ultra-low power.
doi_str_mv 10.1109/JSSC.2011.2164009
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSSC_2011_2164009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6008514</ieee_id><sourcerecordid>2552283571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-a6e42334c6f453d9127c1b8406c45352c38c35f2b7772e97348c6d4730bbd7573</originalsourceid><addsrcrecordid>eNpdkFtLAzEQhYMoWKs_QHwJgqgPWzO5bLKPpbReqChuK76FbJqFtnupSUvpv3eXlj74NDPMdw4zB6FrID0Akjy9pemgRwlAj0LMCUlOUAeEUBFI9nOKOoSAihJKyDm6CGHRjJwr6KBhH1NBcPmNFV5mmBNclXharL2JxvUWf9Zb53EywelmtSp2eOTcLDN2idOv_jt-SEdR2zxeorPcFMFdHWoXTUfDyeAlGn88vw7648gywdeRiR2njHEb51ywWQJUWsgUJ7FtZkEtUw2Y00xKSV0iGVc2nnHJSJbNpJCsi-73vitf_25cWOtyHqwrClO5ehN0EjOlmKTQkLf_yEW98VVznE6AcSEEbyHYQ9bXIXiX65Wfl8bvNBDdxqrbWHUbqz7E2mjuDsYmWFPk3lR2Ho5CyqVQsvmyi2723Nw5d1zHhCgBnP0BxN55Eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913455541</pqid></control><display><type>article</type><title>A 250 mV 8 kb 40 nm Ultra-Low Power 9T Supply Feedback SRAM (SF-SRAM)</title><source>IEEE Electronic Library (IEL)</source><creator>Teman, A. ; Pergament, L. ; Cohen, O. ; Fish, A.</creator><creatorcontrib>Teman, A. ; Pergament, L. ; Cohen, O. ; Fish, A.</creatorcontrib><description>Low voltage operation of digital circuits continues to be an attractive option for aggressive power reduction. As standard SRAM bitcells are limited to operation in the strong-inversion regimes due to process variations and local mismatch, the development of specially designed SRAMs for low voltage operation has become popular in recent years. In this paper, we present a novel 9T bitcell, implementing a Supply Feedback concept to internally weaken the pull-up current during write cycles and thus enable low-voltage write operations. As opposed to the majority of existing solutions, this is achieved without the need for additional peripheral circuits and techniques. The proposed bitcell is fully functional under global and local variations at voltages from 250 mV to 1.1 V. In addition, the proposed cell presents a low-leakage state reducing power up to 60%, as compared to an identically supplied 8T bitcell. An 8 kbit SF-SRAM array was implemented and fabricated in a low-power 40 nm process, showing full functionality and ultra-low power.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2011.2164009</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Arrays ; Circuit properties ; Circuits ; CMOS memory integrated circuits ; Design. Technologies. Operation analysis. Testing ; Digital circuits ; Electric potential ; Electric, optical and optoelectronic circuits ; Electronic circuits ; Electronics ; Exact sciences and technology ; Feedback ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; leakage suppression ; Low voltage ; MOS devices ; Noise ; Random access memory ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; SRAM ; Static random access memory ; Steady-state ; Threshold voltage ; Transistors ; ultra low power ; Voltage</subject><ispartof>IEEE journal of solid-state circuits, 2011-11, Vol.46 (11), p.2713-2726</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-a6e42334c6f453d9127c1b8406c45352c38c35f2b7772e97348c6d4730bbd7573</citedby><cites>FETCH-LOGICAL-c354t-a6e42334c6f453d9127c1b8406c45352c38c35f2b7772e97348c6d4730bbd7573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6008514$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6008514$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24758742$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Teman, A.</creatorcontrib><creatorcontrib>Pergament, L.</creatorcontrib><creatorcontrib>Cohen, O.</creatorcontrib><creatorcontrib>Fish, A.</creatorcontrib><title>A 250 mV 8 kb 40 nm Ultra-Low Power 9T Supply Feedback SRAM (SF-SRAM)</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>Low voltage operation of digital circuits continues to be an attractive option for aggressive power reduction. As standard SRAM bitcells are limited to operation in the strong-inversion regimes due to process variations and local mismatch, the development of specially designed SRAMs for low voltage operation has become popular in recent years. In this paper, we present a novel 9T bitcell, implementing a Supply Feedback concept to internally weaken the pull-up current during write cycles and thus enable low-voltage write operations. As opposed to the majority of existing solutions, this is achieved without the need for additional peripheral circuits and techniques. The proposed bitcell is fully functional under global and local variations at voltages from 250 mV to 1.1 V. In addition, the proposed cell presents a low-leakage state reducing power up to 60%, as compared to an identically supplied 8T bitcell. An 8 kbit SF-SRAM array was implemented and fabricated in a low-power 40 nm process, showing full functionality and ultra-low power.</description><subject>Applied sciences</subject><subject>Arrays</subject><subject>Circuit properties</subject><subject>Circuits</subject><subject>CMOS memory integrated circuits</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Digital circuits</subject><subject>Electric potential</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronic circuits</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Feedback</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>leakage suppression</subject><subject>Low voltage</subject><subject>MOS devices</subject><subject>Noise</subject><subject>Random access memory</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>SRAM</subject><subject>Static random access memory</subject><subject>Steady-state</subject><subject>Threshold voltage</subject><subject>Transistors</subject><subject>ultra low power</subject><subject>Voltage</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkFtLAzEQhYMoWKs_QHwJgqgPWzO5bLKPpbReqChuK76FbJqFtnupSUvpv3eXlj74NDPMdw4zB6FrID0Akjy9pemgRwlAj0LMCUlOUAeEUBFI9nOKOoSAihJKyDm6CGHRjJwr6KBhH1NBcPmNFV5mmBNclXharL2JxvUWf9Zb53EywelmtSp2eOTcLDN2idOv_jt-SEdR2zxeorPcFMFdHWoXTUfDyeAlGn88vw7648gywdeRiR2njHEb51ywWQJUWsgUJ7FtZkEtUw2Y00xKSV0iGVc2nnHJSJbNpJCsi-73vitf_25cWOtyHqwrClO5ehN0EjOlmKTQkLf_yEW98VVznE6AcSEEbyHYQ9bXIXiX65Wfl8bvNBDdxqrbWHUbqz7E2mjuDsYmWFPk3lR2Ho5CyqVQsvmyi2723Nw5d1zHhCgBnP0BxN55Eg</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Teman, A.</creator><creator>Pergament, L.</creator><creator>Cohen, O.</creator><creator>Fish, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20111101</creationdate><title>A 250 mV 8 kb 40 nm Ultra-Low Power 9T Supply Feedback SRAM (SF-SRAM)</title><author>Teman, A. ; Pergament, L. ; Cohen, O. ; Fish, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-a6e42334c6f453d9127c1b8406c45352c38c35f2b7772e97348c6d4730bbd7573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Arrays</topic><topic>Circuit properties</topic><topic>Circuits</topic><topic>CMOS memory integrated circuits</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Digital circuits</topic><topic>Electric potential</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronic circuits</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Feedback</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>leakage suppression</topic><topic>Low voltage</topic><topic>MOS devices</topic><topic>Noise</topic><topic>Random access memory</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>SRAM</topic><topic>Static random access memory</topic><topic>Steady-state</topic><topic>Threshold voltage</topic><topic>Transistors</topic><topic>ultra low power</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teman, A.</creatorcontrib><creatorcontrib>Pergament, L.</creatorcontrib><creatorcontrib>Cohen, O.</creatorcontrib><creatorcontrib>Fish, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Teman, A.</au><au>Pergament, L.</au><au>Cohen, O.</au><au>Fish, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 250 mV 8 kb 40 nm Ultra-Low Power 9T Supply Feedback SRAM (SF-SRAM)</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>46</volume><issue>11</issue><spage>2713</spage><epage>2726</epage><pages>2713-2726</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>Low voltage operation of digital circuits continues to be an attractive option for aggressive power reduction. As standard SRAM bitcells are limited to operation in the strong-inversion regimes due to process variations and local mismatch, the development of specially designed SRAMs for low voltage operation has become popular in recent years. In this paper, we present a novel 9T bitcell, implementing a Supply Feedback concept to internally weaken the pull-up current during write cycles and thus enable low-voltage write operations. As opposed to the majority of existing solutions, this is achieved without the need for additional peripheral circuits and techniques. The proposed bitcell is fully functional under global and local variations at voltages from 250 mV to 1.1 V. In addition, the proposed cell presents a low-leakage state reducing power up to 60%, as compared to an identically supplied 8T bitcell. An 8 kbit SF-SRAM array was implemented and fabricated in a low-power 40 nm process, showing full functionality and ultra-low power.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JSSC.2011.2164009</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2011-11, Vol.46 (11), p.2713-2726
issn 0018-9200
1558-173X
language eng
recordid cdi_crossref_primary_10_1109_JSSC_2011_2164009
source IEEE Electronic Library (IEL)
subjects Applied sciences
Arrays
Circuit properties
Circuits
CMOS memory integrated circuits
Design. Technologies. Operation analysis. Testing
Digital circuits
Electric potential
Electric, optical and optoelectronic circuits
Electronic circuits
Electronics
Exact sciences and technology
Feedback
Integrated circuits
Integrated circuits by function (including memories and processors)
leakage suppression
Low voltage
MOS devices
Noise
Random access memory
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
SRAM
Static random access memory
Steady-state
Threshold voltage
Transistors
ultra low power
Voltage
title A 250 mV 8 kb 40 nm Ultra-Low Power 9T Supply Feedback SRAM (SF-SRAM)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A30%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20250%20mV%208%20kb%2040%20nm%20Ultra-Low%20Power%209T%20Supply%20Feedback%20SRAM%20(SF-SRAM)&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Teman,%20A.&rft.date=2011-11-01&rft.volume=46&rft.issue=11&rft.spage=2713&rft.epage=2726&rft.pages=2713-2726&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2011.2164009&rft_dat=%3Cproquest_RIE%3E2552283571%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=913455541&rft_id=info:pmid/&rft_ieee_id=6008514&rfr_iscdi=true