Maximum Likelihood Identification of Stochastic Models of Inertial Sensor Noises

This article applies maximum likelihood estimation (MLE) to the identification of a state-space model for inertial sensor drift. The discrete-time scalar state considered is either a first-order Gauss-Markov process or a Wiener process (WP), both of which are common noise terms in inertial sensor no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-12, Vol.24 (24), p.41021-41028
Hauptverfasser: Ye, Shida, Bar-Shalom, Yaakov, Willett, Peter, Zaki, Ahmed S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 41028
container_issue 24
container_start_page 41021
container_title IEEE sensors journal
container_volume 24
creator Ye, Shida
Bar-Shalom, Yaakov
Willett, Peter
Zaki, Ahmed S.
description This article applies maximum likelihood estimation (MLE) to the identification of a state-space model for inertial sensor drift. The discrete-time scalar state considered is either a first-order Gauss-Markov process or a Wiener process (WP), both of which are common noise terms in inertial sensor noise models. The measurement model includes an additive white measurement noise. In setting up the MLE, the likelihood function (LF) is derived within the steady-state Kalman filter (KF) framework. The resulting log-likelihood function (LLF) can be expressed as a quadratic function of the measurements. This allows for an explicit expression of the LLF, facilitating the evaluation of the Cramér-Rao lower bound (CRLB) and thence testing and ultimately confirming the statistical efficiency, i.e., the optimality, of the ML estimators. Simulations demonstrate the optimal performance of the estimators, and applications to real sensor data indicate advantages over the Allan variance (AV) method for noise modeling.
doi_str_mv 10.1109/JSEN.2024.3487542
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2024_3487542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10742285</ieee_id><sourcerecordid>3146586792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c912-886426bb160bcf4895782a85d5638f9103fd6770cf1fb02d85f8910cb99e3f1a3</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWKs_QHARcD01n5NkKcWPSluFduEuZDIJTZ1OajIF_ffO0C5cvcfl3PfgAHCL0QRjpB7eVk_LCUGETSiTgjNyBkaYc1lgweT5sFNUMCo-L8FVzluEsBJcjMDHwvyE3WEH5-HLNWETYw1ntWu74IM1XYgtjB6uumg3JnfBwkWsXZOHcNa61AXTwJVrc0xwGUN2-RpceNNkd3OaY7B-flpPX4v5-8ts-jgvrMKkkLJkpKwqXKLKeiYVF5IYyWteUukVRtTXpRDIeuwrRGrJvexTWynlqMeGjsH98ew-xe-Dy53exkNq-4-aYlZyWQpFegofKZtizsl5vU9hZ9KvxkgP3vTgTQ_e9Mlb37k7doJz7h8vGCGS0z8LJGkC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146586792</pqid></control><display><type>article</type><title>Maximum Likelihood Identification of Stochastic Models of Inertial Sensor Noises</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Ye, Shida ; Bar-Shalom, Yaakov ; Willett, Peter ; Zaki, Ahmed S.</creator><creatorcontrib>Ye, Shida ; Bar-Shalom, Yaakov ; Willett, Peter ; Zaki, Ahmed S.</creatorcontrib><description>This article applies maximum likelihood estimation (MLE) to the identification of a state-space model for inertial sensor drift. The discrete-time scalar state considered is either a first-order Gauss-Markov process or a Wiener process (WP), both of which are common noise terms in inertial sensor noise models. The measurement model includes an additive white measurement noise. In setting up the MLE, the likelihood function (LF) is derived within the steady-state Kalman filter (KF) framework. The resulting log-likelihood function (LLF) can be expressed as a quadratic function of the measurements. This allows for an explicit expression of the LLF, facilitating the evaluation of the Cramér-Rao lower bound (CRLB) and thence testing and ultimately confirming the statistical efficiency, i.e., the optimality, of the ML estimators. Simulations demonstrate the optimal performance of the estimators, and applications to real sensor data indicate advantages over the Allan variance (AV) method for noise modeling.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3487542</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cramer–Rao bound ; Gaussian process ; Gyroscopes ; Inertial sensing devices ; Inertial sensors ; Kalman filters ; Lower bounds ; Markov processes ; Mathematical models ; Maximum likelihood estimation ; maximum likelihood estimation (MLE) ; Noise ; Noise measurement ; Optimization ; Quadratic equations ; State space models ; Steady-state ; Stochastic models ; Stochastic processes ; stochastic systems ; system identification ; Technological innovation</subject><ispartof>IEEE sensors journal, 2024-12, Vol.24 (24), p.41021-41028</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c912-886426bb160bcf4895782a85d5638f9103fd6770cf1fb02d85f8910cb99e3f1a3</cites><orcidid>0000-0003-1317-3368 ; 0000-0002-6030-2727 ; 0000-0001-8443-5586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10742285$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10742285$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ye, Shida</creatorcontrib><creatorcontrib>Bar-Shalom, Yaakov</creatorcontrib><creatorcontrib>Willett, Peter</creatorcontrib><creatorcontrib>Zaki, Ahmed S.</creatorcontrib><title>Maximum Likelihood Identification of Stochastic Models of Inertial Sensor Noises</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This article applies maximum likelihood estimation (MLE) to the identification of a state-space model for inertial sensor drift. The discrete-time scalar state considered is either a first-order Gauss-Markov process or a Wiener process (WP), both of which are common noise terms in inertial sensor noise models. The measurement model includes an additive white measurement noise. In setting up the MLE, the likelihood function (LF) is derived within the steady-state Kalman filter (KF) framework. The resulting log-likelihood function (LLF) can be expressed as a quadratic function of the measurements. This allows for an explicit expression of the LLF, facilitating the evaluation of the Cramér-Rao lower bound (CRLB) and thence testing and ultimately confirming the statistical efficiency, i.e., the optimality, of the ML estimators. Simulations demonstrate the optimal performance of the estimators, and applications to real sensor data indicate advantages over the Allan variance (AV) method for noise modeling.</description><subject>Cramer–Rao bound</subject><subject>Gaussian process</subject><subject>Gyroscopes</subject><subject>Inertial sensing devices</subject><subject>Inertial sensors</subject><subject>Kalman filters</subject><subject>Lower bounds</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>maximum likelihood estimation (MLE)</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Optimization</subject><subject>Quadratic equations</subject><subject>State space models</subject><subject>Steady-state</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>stochastic systems</subject><subject>system identification</subject><subject>Technological innovation</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEURYMoWKs_QHARcD01n5NkKcWPSluFduEuZDIJTZ1OajIF_ffO0C5cvcfl3PfgAHCL0QRjpB7eVk_LCUGETSiTgjNyBkaYc1lgweT5sFNUMCo-L8FVzluEsBJcjMDHwvyE3WEH5-HLNWETYw1ntWu74IM1XYgtjB6uumg3JnfBwkWsXZOHcNa61AXTwJVrc0xwGUN2-RpceNNkd3OaY7B-flpPX4v5-8ts-jgvrMKkkLJkpKwqXKLKeiYVF5IYyWteUukVRtTXpRDIeuwrRGrJvexTWynlqMeGjsH98ew-xe-Dy53exkNq-4-aYlZyWQpFegofKZtizsl5vU9hZ9KvxkgP3vTgTQ_e9Mlb37k7doJz7h8vGCGS0z8LJGkC</recordid><startdate>20241215</startdate><enddate>20241215</enddate><creator>Ye, Shida</creator><creator>Bar-Shalom, Yaakov</creator><creator>Willett, Peter</creator><creator>Zaki, Ahmed S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1317-3368</orcidid><orcidid>https://orcid.org/0000-0002-6030-2727</orcidid><orcidid>https://orcid.org/0000-0001-8443-5586</orcidid></search><sort><creationdate>20241215</creationdate><title>Maximum Likelihood Identification of Stochastic Models of Inertial Sensor Noises</title><author>Ye, Shida ; Bar-Shalom, Yaakov ; Willett, Peter ; Zaki, Ahmed S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c912-886426bb160bcf4895782a85d5638f9103fd6770cf1fb02d85f8910cb99e3f1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cramer–Rao bound</topic><topic>Gaussian process</topic><topic>Gyroscopes</topic><topic>Inertial sensing devices</topic><topic>Inertial sensors</topic><topic>Kalman filters</topic><topic>Lower bounds</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>maximum likelihood estimation (MLE)</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Optimization</topic><topic>Quadratic equations</topic><topic>State space models</topic><topic>Steady-state</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>stochastic systems</topic><topic>system identification</topic><topic>Technological innovation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Shida</creatorcontrib><creatorcontrib>Bar-Shalom, Yaakov</creatorcontrib><creatorcontrib>Willett, Peter</creatorcontrib><creatorcontrib>Zaki, Ahmed S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Shida</au><au>Bar-Shalom, Yaakov</au><au>Willett, Peter</au><au>Zaki, Ahmed S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum Likelihood Identification of Stochastic Models of Inertial Sensor Noises</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-12-15</date><risdate>2024</risdate><volume>24</volume><issue>24</issue><spage>41021</spage><epage>41028</epage><pages>41021-41028</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This article applies maximum likelihood estimation (MLE) to the identification of a state-space model for inertial sensor drift. The discrete-time scalar state considered is either a first-order Gauss-Markov process or a Wiener process (WP), both of which are common noise terms in inertial sensor noise models. The measurement model includes an additive white measurement noise. In setting up the MLE, the likelihood function (LF) is derived within the steady-state Kalman filter (KF) framework. The resulting log-likelihood function (LLF) can be expressed as a quadratic function of the measurements. This allows for an explicit expression of the LLF, facilitating the evaluation of the Cramér-Rao lower bound (CRLB) and thence testing and ultimately confirming the statistical efficiency, i.e., the optimality, of the ML estimators. Simulations demonstrate the optimal performance of the estimators, and applications to real sensor data indicate advantages over the Allan variance (AV) method for noise modeling.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3487542</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1317-3368</orcidid><orcidid>https://orcid.org/0000-0002-6030-2727</orcidid><orcidid>https://orcid.org/0000-0001-8443-5586</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-12, Vol.24 (24), p.41021-41028
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2024_3487542
source IEEE/IET Electronic Library (IEL)
subjects Cramer–Rao bound
Gaussian process
Gyroscopes
Inertial sensing devices
Inertial sensors
Kalman filters
Lower bounds
Markov processes
Mathematical models
Maximum likelihood estimation
maximum likelihood estimation (MLE)
Noise
Noise measurement
Optimization
Quadratic equations
State space models
Steady-state
Stochastic models
Stochastic processes
stochastic systems
system identification
Technological innovation
title Maximum Likelihood Identification of Stochastic Models of Inertial Sensor Noises
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20Likelihood%20Identification%20of%20Stochastic%20Models%20of%20Inertial%20Sensor%20Noises&rft.jtitle=IEEE%20sensors%20journal&rft.au=Ye,%20Shida&rft.date=2024-12-15&rft.volume=24&rft.issue=24&rft.spage=41021&rft.epage=41028&rft.pages=41021-41028&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3487542&rft_dat=%3Cproquest_RIE%3E3146586792%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146586792&rft_id=info:pmid/&rft_ieee_id=10742285&rfr_iscdi=true