Maximum Likelihood Identification of Stochastic Models of Inertial Sensor Noises
This article applies maximum likelihood estimation (MLE) to the identification of a state-space model for inertial sensor drift. The discrete-time scalar state considered is either a first-order Gauss-Markov process or a Wiener process (WP), both of which are common noise terms in inertial sensor no...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-12, Vol.24 (24), p.41021-41028 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 41028 |
---|---|
container_issue | 24 |
container_start_page | 41021 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Ye, Shida Bar-Shalom, Yaakov Willett, Peter Zaki, Ahmed S. |
description | This article applies maximum likelihood estimation (MLE) to the identification of a state-space model for inertial sensor drift. The discrete-time scalar state considered is either a first-order Gauss-Markov process or a Wiener process (WP), both of which are common noise terms in inertial sensor noise models. The measurement model includes an additive white measurement noise. In setting up the MLE, the likelihood function (LF) is derived within the steady-state Kalman filter (KF) framework. The resulting log-likelihood function (LLF) can be expressed as a quadratic function of the measurements. This allows for an explicit expression of the LLF, facilitating the evaluation of the Cramér-Rao lower bound (CRLB) and thence testing and ultimately confirming the statistical efficiency, i.e., the optimality, of the ML estimators. Simulations demonstrate the optimal performance of the estimators, and applications to real sensor data indicate advantages over the Allan variance (AV) method for noise modeling. |
doi_str_mv | 10.1109/JSEN.2024.3487542 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2024_3487542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10742285</ieee_id><sourcerecordid>3146586792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c912-886426bb160bcf4895782a85d5638f9103fd6770cf1fb02d85f8910cb99e3f1a3</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWKs_QHARcD01n5NkKcWPSluFduEuZDIJTZ1OajIF_ffO0C5cvcfl3PfgAHCL0QRjpB7eVk_LCUGETSiTgjNyBkaYc1lgweT5sFNUMCo-L8FVzluEsBJcjMDHwvyE3WEH5-HLNWETYw1ntWu74IM1XYgtjB6uumg3JnfBwkWsXZOHcNa61AXTwJVrc0xwGUN2-RpceNNkd3OaY7B-flpPX4v5-8ts-jgvrMKkkLJkpKwqXKLKeiYVF5IYyWteUukVRtTXpRDIeuwrRGrJvexTWynlqMeGjsH98ew-xe-Dy53exkNq-4-aYlZyWQpFegofKZtizsl5vU9hZ9KvxkgP3vTgTQ_e9Mlb37k7doJz7h8vGCGS0z8LJGkC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146586792</pqid></control><display><type>article</type><title>Maximum Likelihood Identification of Stochastic Models of Inertial Sensor Noises</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Ye, Shida ; Bar-Shalom, Yaakov ; Willett, Peter ; Zaki, Ahmed S.</creator><creatorcontrib>Ye, Shida ; Bar-Shalom, Yaakov ; Willett, Peter ; Zaki, Ahmed S.</creatorcontrib><description>This article applies maximum likelihood estimation (MLE) to the identification of a state-space model for inertial sensor drift. The discrete-time scalar state considered is either a first-order Gauss-Markov process or a Wiener process (WP), both of which are common noise terms in inertial sensor noise models. The measurement model includes an additive white measurement noise. In setting up the MLE, the likelihood function (LF) is derived within the steady-state Kalman filter (KF) framework. The resulting log-likelihood function (LLF) can be expressed as a quadratic function of the measurements. This allows for an explicit expression of the LLF, facilitating the evaluation of the Cramér-Rao lower bound (CRLB) and thence testing and ultimately confirming the statistical efficiency, i.e., the optimality, of the ML estimators. Simulations demonstrate the optimal performance of the estimators, and applications to real sensor data indicate advantages over the Allan variance (AV) method for noise modeling.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3487542</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cramer–Rao bound ; Gaussian process ; Gyroscopes ; Inertial sensing devices ; Inertial sensors ; Kalman filters ; Lower bounds ; Markov processes ; Mathematical models ; Maximum likelihood estimation ; maximum likelihood estimation (MLE) ; Noise ; Noise measurement ; Optimization ; Quadratic equations ; State space models ; Steady-state ; Stochastic models ; Stochastic processes ; stochastic systems ; system identification ; Technological innovation</subject><ispartof>IEEE sensors journal, 2024-12, Vol.24 (24), p.41021-41028</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c912-886426bb160bcf4895782a85d5638f9103fd6770cf1fb02d85f8910cb99e3f1a3</cites><orcidid>0000-0003-1317-3368 ; 0000-0002-6030-2727 ; 0000-0001-8443-5586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10742285$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10742285$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ye, Shida</creatorcontrib><creatorcontrib>Bar-Shalom, Yaakov</creatorcontrib><creatorcontrib>Willett, Peter</creatorcontrib><creatorcontrib>Zaki, Ahmed S.</creatorcontrib><title>Maximum Likelihood Identification of Stochastic Models of Inertial Sensor Noises</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This article applies maximum likelihood estimation (MLE) to the identification of a state-space model for inertial sensor drift. The discrete-time scalar state considered is either a first-order Gauss-Markov process or a Wiener process (WP), both of which are common noise terms in inertial sensor noise models. The measurement model includes an additive white measurement noise. In setting up the MLE, the likelihood function (LF) is derived within the steady-state Kalman filter (KF) framework. The resulting log-likelihood function (LLF) can be expressed as a quadratic function of the measurements. This allows for an explicit expression of the LLF, facilitating the evaluation of the Cramér-Rao lower bound (CRLB) and thence testing and ultimately confirming the statistical efficiency, i.e., the optimality, of the ML estimators. Simulations demonstrate the optimal performance of the estimators, and applications to real sensor data indicate advantages over the Allan variance (AV) method for noise modeling.</description><subject>Cramer–Rao bound</subject><subject>Gaussian process</subject><subject>Gyroscopes</subject><subject>Inertial sensing devices</subject><subject>Inertial sensors</subject><subject>Kalman filters</subject><subject>Lower bounds</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>maximum likelihood estimation (MLE)</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Optimization</subject><subject>Quadratic equations</subject><subject>State space models</subject><subject>Steady-state</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>stochastic systems</subject><subject>system identification</subject><subject>Technological innovation</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEURYMoWKs_QHARcD01n5NkKcWPSluFduEuZDIJTZ1OajIF_ffO0C5cvcfl3PfgAHCL0QRjpB7eVk_LCUGETSiTgjNyBkaYc1lgweT5sFNUMCo-L8FVzluEsBJcjMDHwvyE3WEH5-HLNWETYw1ntWu74IM1XYgtjB6uumg3JnfBwkWsXZOHcNa61AXTwJVrc0xwGUN2-RpceNNkd3OaY7B-flpPX4v5-8ts-jgvrMKkkLJkpKwqXKLKeiYVF5IYyWteUukVRtTXpRDIeuwrRGrJvexTWynlqMeGjsH98ew-xe-Dy53exkNq-4-aYlZyWQpFegofKZtizsl5vU9hZ9KvxkgP3vTgTQ_e9Mlb37k7doJz7h8vGCGS0z8LJGkC</recordid><startdate>20241215</startdate><enddate>20241215</enddate><creator>Ye, Shida</creator><creator>Bar-Shalom, Yaakov</creator><creator>Willett, Peter</creator><creator>Zaki, Ahmed S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1317-3368</orcidid><orcidid>https://orcid.org/0000-0002-6030-2727</orcidid><orcidid>https://orcid.org/0000-0001-8443-5586</orcidid></search><sort><creationdate>20241215</creationdate><title>Maximum Likelihood Identification of Stochastic Models of Inertial Sensor Noises</title><author>Ye, Shida ; Bar-Shalom, Yaakov ; Willett, Peter ; Zaki, Ahmed S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c912-886426bb160bcf4895782a85d5638f9103fd6770cf1fb02d85f8910cb99e3f1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cramer–Rao bound</topic><topic>Gaussian process</topic><topic>Gyroscopes</topic><topic>Inertial sensing devices</topic><topic>Inertial sensors</topic><topic>Kalman filters</topic><topic>Lower bounds</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>maximum likelihood estimation (MLE)</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Optimization</topic><topic>Quadratic equations</topic><topic>State space models</topic><topic>Steady-state</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>stochastic systems</topic><topic>system identification</topic><topic>Technological innovation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Shida</creatorcontrib><creatorcontrib>Bar-Shalom, Yaakov</creatorcontrib><creatorcontrib>Willett, Peter</creatorcontrib><creatorcontrib>Zaki, Ahmed S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Shida</au><au>Bar-Shalom, Yaakov</au><au>Willett, Peter</au><au>Zaki, Ahmed S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum Likelihood Identification of Stochastic Models of Inertial Sensor Noises</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-12-15</date><risdate>2024</risdate><volume>24</volume><issue>24</issue><spage>41021</spage><epage>41028</epage><pages>41021-41028</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This article applies maximum likelihood estimation (MLE) to the identification of a state-space model for inertial sensor drift. The discrete-time scalar state considered is either a first-order Gauss-Markov process or a Wiener process (WP), both of which are common noise terms in inertial sensor noise models. The measurement model includes an additive white measurement noise. In setting up the MLE, the likelihood function (LF) is derived within the steady-state Kalman filter (KF) framework. The resulting log-likelihood function (LLF) can be expressed as a quadratic function of the measurements. This allows for an explicit expression of the LLF, facilitating the evaluation of the Cramér-Rao lower bound (CRLB) and thence testing and ultimately confirming the statistical efficiency, i.e., the optimality, of the ML estimators. Simulations demonstrate the optimal performance of the estimators, and applications to real sensor data indicate advantages over the Allan variance (AV) method for noise modeling.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3487542</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1317-3368</orcidid><orcidid>https://orcid.org/0000-0002-6030-2727</orcidid><orcidid>https://orcid.org/0000-0001-8443-5586</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-12, Vol.24 (24), p.41021-41028 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2024_3487542 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Cramer–Rao bound Gaussian process Gyroscopes Inertial sensing devices Inertial sensors Kalman filters Lower bounds Markov processes Mathematical models Maximum likelihood estimation maximum likelihood estimation (MLE) Noise Noise measurement Optimization Quadratic equations State space models Steady-state Stochastic models Stochastic processes stochastic systems system identification Technological innovation |
title | Maximum Likelihood Identification of Stochastic Models of Inertial Sensor Noises |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A13%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20Likelihood%20Identification%20of%20Stochastic%20Models%20of%20Inertial%20Sensor%20Noises&rft.jtitle=IEEE%20sensors%20journal&rft.au=Ye,%20Shida&rft.date=2024-12-15&rft.volume=24&rft.issue=24&rft.spage=41021&rft.epage=41028&rft.pages=41021-41028&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3487542&rft_dat=%3Cproquest_RIE%3E3146586792%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146586792&rft_id=info:pmid/&rft_ieee_id=10742285&rfr_iscdi=true |