The Implementation of a Compact Cold Atom Interference Gyroscope Based on Miniaturized Quartz Vacuum Chamber

The cold atom interference gyroscope (CAIG) offer substantial potential for rotation measurement due to the high sensitivity and stability. The CAIG with a fountain configuration realized by four-pulse could provide a larger interference-loop area, and enhanced performance. However, this kind of CAI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-12, Vol.24 (24), p.40507-40517
Hauptverfasser: Zhao, Yingpeng, Li, Dianrong, Niu, Jingyu, Bao, Shuning, Zhang, Kaijun, Wang, Yuchen, Cheng, Bing, Zhang, Cheng, Niu, Kexiao, Liu, Yuanzheng, Yue, Yazhou, Wang, Xiaolong, Wu, Bin, Lin, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40517
container_issue 24
container_start_page 40507
container_title IEEE sensors journal
container_volume 24
creator Zhao, Yingpeng
Li, Dianrong
Niu, Jingyu
Bao, Shuning
Zhang, Kaijun
Wang, Yuchen
Cheng, Bing
Zhang, Cheng
Niu, Kexiao
Liu, Yuanzheng
Yue, Yazhou
Wang, Xiaolong
Wu, Bin
Lin, Qiang
description The cold atom interference gyroscope (CAIG) offer substantial potential for rotation measurement due to the high sensitivity and stability. The CAIG with a fountain configuration realized by four-pulse could provide a larger interference-loop area, and enhanced performance. However, this kind of CAIG is usually much larger and higher since it requires a vacuum chamber with sufficient height to achieve a long Raman pulse interval. We demonstrate a four-pulse CAIG based on a miniaturized vacuum chamber that enables portable and transportable rotation rate measurements. The main vacuum chamber is realized by whole glass material. The height of the vacuum unit is 0.7 m, the volume is {{8}.{86} \times {10}^{{4}}}~{{\textrm {cm}}^{{3}}} , and the mass is 75 kg. Then, we estimated the performance of our portable CAIG in the environment of the underground laboratory and the fifth-floor office building. In the laboratory, the sensitivities of the homemade CAIG is {4}.{44}\times {10}^{-{6}} rad/s /(\text {Hz})^{1/2} with an interrogation time of 55 ms and an interference area of 25 mm2. In addition, we measured the angular velocity of the Earth, the relative error is 2.4%. Furthermore, we transported the CAIG to the fifth floor of the office building, which is near the subway. Ultimately, the CAIG achieved a sensitivity of {5}.{47}\times {10}^{-{4}} rad/s /(\text {Hz})^{1/2} . Additionally, the theoretical maximum interrogation time achieved by this CAIG is 124 ms corresponding to a sensitivity of {{5}.{62}\times {10}^{-{8}}}~{/(\text {Hz})^{1/2}} . Our new design of the compact CAIG could provide novel insights into the miniaturization of CAIGs, while also pointing out areas for further improvement.
doi_str_mv 10.1109/JSEN.2024.3483828
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2024_3483828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10736436</ieee_id><sourcerecordid>3146587526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-8b7aabacc1915dbfdcfbeb5f7cc47bf5a0faba3afbe16689a516a28e433b0aca3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRSMEEqXwAUgsLLFOseM4dpclKqWogBAFsYsm7lhNlReOs2i_HkftgtW87p3RnCC4ZXTCGJ0-vHzO3yYRjeIJjxVXkToLRkwIFTIZq_Mh5zSMufy5DK66bkcpm0ohR0G53iJZVm2JFdYOXNHUpDEESNpULWjnY7khM9dUZFk7tAYt1hrJYm-bTjctkkfocEO87bWoC3C9LQ6-_ujBugP5Bt33FUm3UOVor4MLA2WHN6c4Dr6e5uv0OVy9L5bpbBVqJhMXqlwC5KA1mzKxyc1GmxxzYaTWscyNAGr8mIPvsiRRUxAsgUhhzHlOQQMfB_fHva1tfnvsXLZrelv7kxlncSKUFFHiVeyo0v6VzqLJWltUYPcZo9kANRugZgPU7ATVe-6OngIR_-klT2Ke8D8Q_XYT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146587526</pqid></control><display><type>article</type><title>The Implementation of a Compact Cold Atom Interference Gyroscope Based on Miniaturized Quartz Vacuum Chamber</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Yingpeng ; Li, Dianrong ; Niu, Jingyu ; Bao, Shuning ; Zhang, Kaijun ; Wang, Yuchen ; Cheng, Bing ; Zhang, Cheng ; Niu, Kexiao ; Liu, Yuanzheng ; Yue, Yazhou ; Wang, Xiaolong ; Wu, Bin ; Lin, Qiang</creator><creatorcontrib>Zhao, Yingpeng ; Li, Dianrong ; Niu, Jingyu ; Bao, Shuning ; Zhang, Kaijun ; Wang, Yuchen ; Cheng, Bing ; Zhang, Cheng ; Niu, Kexiao ; Liu, Yuanzheng ; Yue, Yazhou ; Wang, Xiaolong ; Wu, Bin ; Lin, Qiang</creatorcontrib><description><![CDATA[The cold atom interference gyroscope (CAIG) offer substantial potential for rotation measurement due to the high sensitivity and stability. The CAIG with a fountain configuration realized by four-pulse could provide a larger interference-loop area, and enhanced performance. However, this kind of CAIG is usually much larger and higher since it requires a vacuum chamber with sufficient height to achieve a long Raman pulse interval. We demonstrate a four-pulse CAIG based on a miniaturized vacuum chamber that enables portable and transportable rotation rate measurements. The main vacuum chamber is realized by whole glass material. The height of the vacuum unit is 0.7 m, the volume is <inline-formula> <tex-math notation="LaTeX">{{8}.{86} \times {10}^{{4}}}~{{\textrm {cm}}^{{3}}} </tex-math></inline-formula>, and the mass is 75 kg. Then, we estimated the performance of our portable CAIG in the environment of the underground laboratory and the fifth-floor office building. In the laboratory, the sensitivities of the homemade CAIG is <inline-formula> <tex-math notation="LaTeX">{4}.{44}\times {10}^{-{6}} </tex-math></inline-formula> rad/s<inline-formula> <tex-math notation="LaTeX">/(\text {Hz})^{1/2} </tex-math></inline-formula> with an interrogation time of 55 ms and an interference area of 25 mm2. In addition, we measured the angular velocity of the Earth, the relative error is 2.4%. Furthermore, we transported the CAIG to the fifth floor of the office building, which is near the subway. Ultimately, the CAIG achieved a sensitivity of <inline-formula> <tex-math notation="LaTeX">{5}.{47}\times {10}^{-{4}} </tex-math></inline-formula> rad/s<inline-formula> <tex-math notation="LaTeX">/(\text {Hz})^{1/2} </tex-math></inline-formula>. Additionally, the theoretical maximum interrogation time achieved by this CAIG is 124 ms corresponding to a sensitivity of <inline-formula> <tex-math notation="LaTeX">{{5}.{62}\times {10}^{-{8}}}~{/(\text {Hz})^{1/2}} </tex-math></inline-formula>. Our new design of the compact CAIG could provide novel insights into the miniaturization of CAIGs, while also pointing out areas for further improvement.]]></description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3483828</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Angular velocity ; Atom gyroscope ; Atomic beams ; Atomic measurements ; Cold atoms ; Configuration management ; Error analysis ; Geophysical measurements ; Gyroscopes ; Height ; Interference ; Interrogation ; Laser beams ; Measurement by laser beam ; measurements of angular velocity ; Office buildings ; Optical fibers ; Performance enhancement ; Portability ; Rotation ; Sensitivity ; Sensors ; vacuum chamber ; Vacuum chambers</subject><ispartof>IEEE sensors journal, 2024-12, Vol.24 (24), p.40507-40517</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-8b7aabacc1915dbfdcfbeb5f7cc47bf5a0faba3afbe16689a516a28e433b0aca3</cites><orcidid>0000-0003-2787-7761 ; 0009-0003-7665-7471 ; 0000-0002-1738-1466 ; 0000-0002-0953-9489 ; 0000-0001-6541-5774 ; 0009-0002-6939-4450 ; 0000-0003-4837-2586 ; 0000-0001-9111-609X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10736436$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10736436$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Yingpeng</creatorcontrib><creatorcontrib>Li, Dianrong</creatorcontrib><creatorcontrib>Niu, Jingyu</creatorcontrib><creatorcontrib>Bao, Shuning</creatorcontrib><creatorcontrib>Zhang, Kaijun</creatorcontrib><creatorcontrib>Wang, Yuchen</creatorcontrib><creatorcontrib>Cheng, Bing</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Niu, Kexiao</creatorcontrib><creatorcontrib>Liu, Yuanzheng</creatorcontrib><creatorcontrib>Yue, Yazhou</creatorcontrib><creatorcontrib>Wang, Xiaolong</creatorcontrib><creatorcontrib>Wu, Bin</creatorcontrib><creatorcontrib>Lin, Qiang</creatorcontrib><title>The Implementation of a Compact Cold Atom Interference Gyroscope Based on Miniaturized Quartz Vacuum Chamber</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description><![CDATA[The cold atom interference gyroscope (CAIG) offer substantial potential for rotation measurement due to the high sensitivity and stability. The CAIG with a fountain configuration realized by four-pulse could provide a larger interference-loop area, and enhanced performance. However, this kind of CAIG is usually much larger and higher since it requires a vacuum chamber with sufficient height to achieve a long Raman pulse interval. We demonstrate a four-pulse CAIG based on a miniaturized vacuum chamber that enables portable and transportable rotation rate measurements. The main vacuum chamber is realized by whole glass material. The height of the vacuum unit is 0.7 m, the volume is <inline-formula> <tex-math notation="LaTeX">{{8}.{86} \times {10}^{{4}}}~{{\textrm {cm}}^{{3}}} </tex-math></inline-formula>, and the mass is 75 kg. Then, we estimated the performance of our portable CAIG in the environment of the underground laboratory and the fifth-floor office building. In the laboratory, the sensitivities of the homemade CAIG is <inline-formula> <tex-math notation="LaTeX">{4}.{44}\times {10}^{-{6}} </tex-math></inline-formula> rad/s<inline-formula> <tex-math notation="LaTeX">/(\text {Hz})^{1/2} </tex-math></inline-formula> with an interrogation time of 55 ms and an interference area of 25 mm2. In addition, we measured the angular velocity of the Earth, the relative error is 2.4%. Furthermore, we transported the CAIG to the fifth floor of the office building, which is near the subway. Ultimately, the CAIG achieved a sensitivity of <inline-formula> <tex-math notation="LaTeX">{5}.{47}\times {10}^{-{4}} </tex-math></inline-formula> rad/s<inline-formula> <tex-math notation="LaTeX">/(\text {Hz})^{1/2} </tex-math></inline-formula>. Additionally, the theoretical maximum interrogation time achieved by this CAIG is 124 ms corresponding to a sensitivity of <inline-formula> <tex-math notation="LaTeX">{{5}.{62}\times {10}^{-{8}}}~{/(\text {Hz})^{1/2}} </tex-math></inline-formula>. Our new design of the compact CAIG could provide novel insights into the miniaturization of CAIGs, while also pointing out areas for further improvement.]]></description><subject>Angular velocity</subject><subject>Atom gyroscope</subject><subject>Atomic beams</subject><subject>Atomic measurements</subject><subject>Cold atoms</subject><subject>Configuration management</subject><subject>Error analysis</subject><subject>Geophysical measurements</subject><subject>Gyroscopes</subject><subject>Height</subject><subject>Interference</subject><subject>Interrogation</subject><subject>Laser beams</subject><subject>Measurement by laser beam</subject><subject>measurements of angular velocity</subject><subject>Office buildings</subject><subject>Optical fibers</subject><subject>Performance enhancement</subject><subject>Portability</subject><subject>Rotation</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>vacuum chamber</subject><subject>Vacuum chambers</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRSMEEqXwAUgsLLFOseM4dpclKqWogBAFsYsm7lhNlReOs2i_HkftgtW87p3RnCC4ZXTCGJ0-vHzO3yYRjeIJjxVXkToLRkwIFTIZq_Mh5zSMufy5DK66bkcpm0ohR0G53iJZVm2JFdYOXNHUpDEESNpULWjnY7khM9dUZFk7tAYt1hrJYm-bTjctkkfocEO87bWoC3C9LQ6-_ujBugP5Bt33FUm3UOVor4MLA2WHN6c4Dr6e5uv0OVy9L5bpbBVqJhMXqlwC5KA1mzKxyc1GmxxzYaTWscyNAGr8mIPvsiRRUxAsgUhhzHlOQQMfB_fHva1tfnvsXLZrelv7kxlncSKUFFHiVeyo0v6VzqLJWltUYPcZo9kANRugZgPU7ATVe-6OngIR_-klT2Ke8D8Q_XYT</recordid><startdate>20241215</startdate><enddate>20241215</enddate><creator>Zhao, Yingpeng</creator><creator>Li, Dianrong</creator><creator>Niu, Jingyu</creator><creator>Bao, Shuning</creator><creator>Zhang, Kaijun</creator><creator>Wang, Yuchen</creator><creator>Cheng, Bing</creator><creator>Zhang, Cheng</creator><creator>Niu, Kexiao</creator><creator>Liu, Yuanzheng</creator><creator>Yue, Yazhou</creator><creator>Wang, Xiaolong</creator><creator>Wu, Bin</creator><creator>Lin, Qiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2787-7761</orcidid><orcidid>https://orcid.org/0009-0003-7665-7471</orcidid><orcidid>https://orcid.org/0000-0002-1738-1466</orcidid><orcidid>https://orcid.org/0000-0002-0953-9489</orcidid><orcidid>https://orcid.org/0000-0001-6541-5774</orcidid><orcidid>https://orcid.org/0009-0002-6939-4450</orcidid><orcidid>https://orcid.org/0000-0003-4837-2586</orcidid><orcidid>https://orcid.org/0000-0001-9111-609X</orcidid></search><sort><creationdate>20241215</creationdate><title>The Implementation of a Compact Cold Atom Interference Gyroscope Based on Miniaturized Quartz Vacuum Chamber</title><author>Zhao, Yingpeng ; Li, Dianrong ; Niu, Jingyu ; Bao, Shuning ; Zhang, Kaijun ; Wang, Yuchen ; Cheng, Bing ; Zhang, Cheng ; Niu, Kexiao ; Liu, Yuanzheng ; Yue, Yazhou ; Wang, Xiaolong ; Wu, Bin ; Lin, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-8b7aabacc1915dbfdcfbeb5f7cc47bf5a0faba3afbe16689a516a28e433b0aca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Angular velocity</topic><topic>Atom gyroscope</topic><topic>Atomic beams</topic><topic>Atomic measurements</topic><topic>Cold atoms</topic><topic>Configuration management</topic><topic>Error analysis</topic><topic>Geophysical measurements</topic><topic>Gyroscopes</topic><topic>Height</topic><topic>Interference</topic><topic>Interrogation</topic><topic>Laser beams</topic><topic>Measurement by laser beam</topic><topic>measurements of angular velocity</topic><topic>Office buildings</topic><topic>Optical fibers</topic><topic>Performance enhancement</topic><topic>Portability</topic><topic>Rotation</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>vacuum chamber</topic><topic>Vacuum chambers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yingpeng</creatorcontrib><creatorcontrib>Li, Dianrong</creatorcontrib><creatorcontrib>Niu, Jingyu</creatorcontrib><creatorcontrib>Bao, Shuning</creatorcontrib><creatorcontrib>Zhang, Kaijun</creatorcontrib><creatorcontrib>Wang, Yuchen</creatorcontrib><creatorcontrib>Cheng, Bing</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Niu, Kexiao</creatorcontrib><creatorcontrib>Liu, Yuanzheng</creatorcontrib><creatorcontrib>Yue, Yazhou</creatorcontrib><creatorcontrib>Wang, Xiaolong</creatorcontrib><creatorcontrib>Wu, Bin</creatorcontrib><creatorcontrib>Lin, Qiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Yingpeng</au><au>Li, Dianrong</au><au>Niu, Jingyu</au><au>Bao, Shuning</au><au>Zhang, Kaijun</au><au>Wang, Yuchen</au><au>Cheng, Bing</au><au>Zhang, Cheng</au><au>Niu, Kexiao</au><au>Liu, Yuanzheng</au><au>Yue, Yazhou</au><au>Wang, Xiaolong</au><au>Wu, Bin</au><au>Lin, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Implementation of a Compact Cold Atom Interference Gyroscope Based on Miniaturized Quartz Vacuum Chamber</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-12-15</date><risdate>2024</risdate><volume>24</volume><issue>24</issue><spage>40507</spage><epage>40517</epage><pages>40507-40517</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract><![CDATA[The cold atom interference gyroscope (CAIG) offer substantial potential for rotation measurement due to the high sensitivity and stability. The CAIG with a fountain configuration realized by four-pulse could provide a larger interference-loop area, and enhanced performance. However, this kind of CAIG is usually much larger and higher since it requires a vacuum chamber with sufficient height to achieve a long Raman pulse interval. We demonstrate a four-pulse CAIG based on a miniaturized vacuum chamber that enables portable and transportable rotation rate measurements. The main vacuum chamber is realized by whole glass material. The height of the vacuum unit is 0.7 m, the volume is <inline-formula> <tex-math notation="LaTeX">{{8}.{86} \times {10}^{{4}}}~{{\textrm {cm}}^{{3}}} </tex-math></inline-formula>, and the mass is 75 kg. Then, we estimated the performance of our portable CAIG in the environment of the underground laboratory and the fifth-floor office building. In the laboratory, the sensitivities of the homemade CAIG is <inline-formula> <tex-math notation="LaTeX">{4}.{44}\times {10}^{-{6}} </tex-math></inline-formula> rad/s<inline-formula> <tex-math notation="LaTeX">/(\text {Hz})^{1/2} </tex-math></inline-formula> with an interrogation time of 55 ms and an interference area of 25 mm2. In addition, we measured the angular velocity of the Earth, the relative error is 2.4%. Furthermore, we transported the CAIG to the fifth floor of the office building, which is near the subway. Ultimately, the CAIG achieved a sensitivity of <inline-formula> <tex-math notation="LaTeX">{5}.{47}\times {10}^{-{4}} </tex-math></inline-formula> rad/s<inline-formula> <tex-math notation="LaTeX">/(\text {Hz})^{1/2} </tex-math></inline-formula>. Additionally, the theoretical maximum interrogation time achieved by this CAIG is 124 ms corresponding to a sensitivity of <inline-formula> <tex-math notation="LaTeX">{{5}.{62}\times {10}^{-{8}}}~{/(\text {Hz})^{1/2}} </tex-math></inline-formula>. Our new design of the compact CAIG could provide novel insights into the miniaturization of CAIGs, while also pointing out areas for further improvement.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3483828</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2787-7761</orcidid><orcidid>https://orcid.org/0009-0003-7665-7471</orcidid><orcidid>https://orcid.org/0000-0002-1738-1466</orcidid><orcidid>https://orcid.org/0000-0002-0953-9489</orcidid><orcidid>https://orcid.org/0000-0001-6541-5774</orcidid><orcidid>https://orcid.org/0009-0002-6939-4450</orcidid><orcidid>https://orcid.org/0000-0003-4837-2586</orcidid><orcidid>https://orcid.org/0000-0001-9111-609X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-12, Vol.24 (24), p.40507-40517
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2024_3483828
source IEEE Electronic Library (IEL)
subjects Angular velocity
Atom gyroscope
Atomic beams
Atomic measurements
Cold atoms
Configuration management
Error analysis
Geophysical measurements
Gyroscopes
Height
Interference
Interrogation
Laser beams
Measurement by laser beam
measurements of angular velocity
Office buildings
Optical fibers
Performance enhancement
Portability
Rotation
Sensitivity
Sensors
vacuum chamber
Vacuum chambers
title The Implementation of a Compact Cold Atom Interference Gyroscope Based on Miniaturized Quartz Vacuum Chamber
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Implementation%20of%20a%20Compact%20Cold%20Atom%20Interference%20Gyroscope%20Based%20on%20Miniaturized%20Quartz%20Vacuum%20Chamber&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhao,%20Yingpeng&rft.date=2024-12-15&rft.volume=24&rft.issue=24&rft.spage=40507&rft.epage=40517&rft.pages=40507-40517&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3483828&rft_dat=%3Cproquest_RIE%3E3146587526%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146587526&rft_id=info:pmid/&rft_ieee_id=10736436&rfr_iscdi=true