A Knowledge Transfer-Based Personalized Human-Robot Interaction Control Method for Lower Limb Exoskeletons
Accurate intent recognition by patients while wearing exoskeletons is crucial during their rehabilitation exercises. In this article, a transfer learning framework for human-robot interaction (EMGTnet-KTD) is proposed to predict human movement intentions in human-robot interactions through surface e...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-12, Vol.24 (23), p.39490-39502 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39502 |
---|---|
container_issue | 23 |
container_start_page | 39490 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Yang, Ming Tian, Dingkui Li, Feng Chen, Ziqiang Zhu, Yuanpei Shang, Weiwei Zhang, Li Wu, Xinyu |
description | Accurate intent recognition by patients while wearing exoskeletons is crucial during their rehabilitation exercises. In this article, a transfer learning framework for human-robot interaction (EMGTnet-KTD) is proposed to predict human movement intentions in human-robot interactions through surface electromyography (sEMG) signals. EMGTnet-KTD consists of a pretrained EMGTnet model and a knowledge transfer module. First, EMGTnet is designed based on a Transformer network. A temporal and spatial domain feature fusion module has been introduced on top of the Transformer network, and the inputs have been reconfigured to enable it to utilize the relationship between before and after human actions. In addition, the knowledge transfer module is composed of a feature extraction layer, a noise reduction layer, and the personalized human lower limb dynamics controller. To evaluate the effectiveness of the proposed method, an experimental validation of our self-collected dataset from seven subjects is performed. The results show that our method achieves better results than other continuous motion prediction methods. Finally, to validate that the generation angle conforms to human physiology, walking experiments involving the use of an exoskeleton are conducted. The experiments demonstrate the effectiveness of the proposed framework and its implementability for exoskeletons. |
doi_str_mv | 10.1109/JSEN.2024.3479239 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2024_3479239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10723275</ieee_id><sourcerecordid>3133498152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-bfb9eccca9fceb60385af86b577063f4e21352892e25b6284353a668372af5553</originalsourceid><addsrcrecordid>eNpNkMtKAzEUhoMoWKsPILgIuJ6ay2SSWdZSbbVe0AruQmZ6olOnk5qkVH16Z6gLN-cC33_gfAidUjKglOQXN8_j-wEjLB3wVOaM53uoR4VQCZWp2u9mTpKUy9dDdBTCkhCaSyF7aDnEt43b1rB4Azz3pgkWfHJpAizwI_jgGlNXP-0y2axMkzy5wkU8bSJ4U8bKNXjkmuhdje8gvrsFts7jmdtCW6tVgcdfLnxADdE14RgdWFMHOPnrffRyNZ6PJsns4Xo6Gs6SksosJoUtcijL0uS2hCIjXAljVVYIKUnGbQqMcsFUzoCJImMq5YKbLFNcMmOFELyPznd31959biBEvXQb3_4RNKecp7migrUU3VGldyF4sHrtq5Xx35oS3SnVnVLdKdV_StvM2S5TAcA_XjLOpOC_4ftzCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133498152</pqid></control><display><type>article</type><title>A Knowledge Transfer-Based Personalized Human-Robot Interaction Control Method for Lower Limb Exoskeletons</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Ming ; Tian, Dingkui ; Li, Feng ; Chen, Ziqiang ; Zhu, Yuanpei ; Shang, Weiwei ; Zhang, Li ; Wu, Xinyu</creator><creatorcontrib>Yang, Ming ; Tian, Dingkui ; Li, Feng ; Chen, Ziqiang ; Zhu, Yuanpei ; Shang, Weiwei ; Zhang, Li ; Wu, Xinyu</creatorcontrib><description>Accurate intent recognition by patients while wearing exoskeletons is crucial during their rehabilitation exercises. In this article, a transfer learning framework for human-robot interaction (EMGTnet-KTD) is proposed to predict human movement intentions in human-robot interactions through surface electromyography (sEMG) signals. EMGTnet-KTD consists of a pretrained EMGTnet model and a knowledge transfer module. First, EMGTnet is designed based on a Transformer network. A temporal and spatial domain feature fusion module has been introduced on top of the Transformer network, and the inputs have been reconfigured to enable it to utilize the relationship between before and after human actions. In addition, the knowledge transfer module is composed of a feature extraction layer, a noise reduction layer, and the personalized human lower limb dynamics controller. To evaluate the effectiveness of the proposed method, an experimental validation of our self-collected dataset from seven subjects is performed. The results show that our method achieves better results than other continuous motion prediction methods. Finally, to validate that the generation angle conforms to human physiology, walking experiments involving the use of an exoskeleton are conducted. The experiments demonstrate the effectiveness of the proposed framework and its implementability for exoskeletons.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3479239</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Control methods ; Customization ; Effectiveness ; Exoskeleton ; Exoskeletons ; Feature extraction ; Human engineering ; Human motion ; Human-robot interaction ; Intent recognition ; Knowledge management ; Knowledge transfer ; Legged locomotion ; Modules ; Muscles ; Noise prediction ; personalized intent recognition ; Robot control ; Robots ; Sensors ; surface electromyography (sEMG) ; Transfer learning ; Transformers</subject><ispartof>IEEE sensors journal, 2024-12, Vol.24 (23), p.39490-39502</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-bfb9eccca9fceb60385af86b577063f4e21352892e25b6284353a668372af5553</cites><orcidid>0009-0004-7814-1513 ; 0000-0001-7541-2198 ; 0009-0000-6997-2586 ; 0000-0001-6130-7821 ; 0009-0004-6575-1128 ; 0009-0001-6888-2084 ; 0000-0003-1152-8962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10723275$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10723275$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Tian, Dingkui</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Chen, Ziqiang</creatorcontrib><creatorcontrib>Zhu, Yuanpei</creatorcontrib><creatorcontrib>Shang, Weiwei</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Wu, Xinyu</creatorcontrib><title>A Knowledge Transfer-Based Personalized Human-Robot Interaction Control Method for Lower Limb Exoskeletons</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Accurate intent recognition by patients while wearing exoskeletons is crucial during their rehabilitation exercises. In this article, a transfer learning framework for human-robot interaction (EMGTnet-KTD) is proposed to predict human movement intentions in human-robot interactions through surface electromyography (sEMG) signals. EMGTnet-KTD consists of a pretrained EMGTnet model and a knowledge transfer module. First, EMGTnet is designed based on a Transformer network. A temporal and spatial domain feature fusion module has been introduced on top of the Transformer network, and the inputs have been reconfigured to enable it to utilize the relationship between before and after human actions. In addition, the knowledge transfer module is composed of a feature extraction layer, a noise reduction layer, and the personalized human lower limb dynamics controller. To evaluate the effectiveness of the proposed method, an experimental validation of our self-collected dataset from seven subjects is performed. The results show that our method achieves better results than other continuous motion prediction methods. Finally, to validate that the generation angle conforms to human physiology, walking experiments involving the use of an exoskeleton are conducted. The experiments demonstrate the effectiveness of the proposed framework and its implementability for exoskeletons.</description><subject>Accuracy</subject><subject>Control methods</subject><subject>Customization</subject><subject>Effectiveness</subject><subject>Exoskeleton</subject><subject>Exoskeletons</subject><subject>Feature extraction</subject><subject>Human engineering</subject><subject>Human motion</subject><subject>Human-robot interaction</subject><subject>Intent recognition</subject><subject>Knowledge management</subject><subject>Knowledge transfer</subject><subject>Legged locomotion</subject><subject>Modules</subject><subject>Muscles</subject><subject>Noise prediction</subject><subject>personalized intent recognition</subject><subject>Robot control</subject><subject>Robots</subject><subject>Sensors</subject><subject>surface electromyography (sEMG)</subject><subject>Transfer learning</subject><subject>Transformers</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtKAzEUhoMoWKsPILgIuJ6ay2SSWdZSbbVe0AruQmZ6olOnk5qkVH16Z6gLN-cC33_gfAidUjKglOQXN8_j-wEjLB3wVOaM53uoR4VQCZWp2u9mTpKUy9dDdBTCkhCaSyF7aDnEt43b1rB4Azz3pgkWfHJpAizwI_jgGlNXP-0y2axMkzy5wkU8bSJ4U8bKNXjkmuhdje8gvrsFts7jmdtCW6tVgcdfLnxADdE14RgdWFMHOPnrffRyNZ6PJsns4Xo6Gs6SksosJoUtcijL0uS2hCIjXAljVVYIKUnGbQqMcsFUzoCJImMq5YKbLFNcMmOFELyPznd31959biBEvXQb3_4RNKecp7migrUU3VGldyF4sHrtq5Xx35oS3SnVnVLdKdV_StvM2S5TAcA_XjLOpOC_4ftzCg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Yang, Ming</creator><creator>Tian, Dingkui</creator><creator>Li, Feng</creator><creator>Chen, Ziqiang</creator><creator>Zhu, Yuanpei</creator><creator>Shang, Weiwei</creator><creator>Zhang, Li</creator><creator>Wu, Xinyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0004-7814-1513</orcidid><orcidid>https://orcid.org/0000-0001-7541-2198</orcidid><orcidid>https://orcid.org/0009-0000-6997-2586</orcidid><orcidid>https://orcid.org/0000-0001-6130-7821</orcidid><orcidid>https://orcid.org/0009-0004-6575-1128</orcidid><orcidid>https://orcid.org/0009-0001-6888-2084</orcidid><orcidid>https://orcid.org/0000-0003-1152-8962</orcidid></search><sort><creationdate>20241201</creationdate><title>A Knowledge Transfer-Based Personalized Human-Robot Interaction Control Method for Lower Limb Exoskeletons</title><author>Yang, Ming ; Tian, Dingkui ; Li, Feng ; Chen, Ziqiang ; Zhu, Yuanpei ; Shang, Weiwei ; Zhang, Li ; Wu, Xinyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-bfb9eccca9fceb60385af86b577063f4e21352892e25b6284353a668372af5553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Control methods</topic><topic>Customization</topic><topic>Effectiveness</topic><topic>Exoskeleton</topic><topic>Exoskeletons</topic><topic>Feature extraction</topic><topic>Human engineering</topic><topic>Human motion</topic><topic>Human-robot interaction</topic><topic>Intent recognition</topic><topic>Knowledge management</topic><topic>Knowledge transfer</topic><topic>Legged locomotion</topic><topic>Modules</topic><topic>Muscles</topic><topic>Noise prediction</topic><topic>personalized intent recognition</topic><topic>Robot control</topic><topic>Robots</topic><topic>Sensors</topic><topic>surface electromyography (sEMG)</topic><topic>Transfer learning</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Tian, Dingkui</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Chen, Ziqiang</creatorcontrib><creatorcontrib>Zhu, Yuanpei</creatorcontrib><creatorcontrib>Shang, Weiwei</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><creatorcontrib>Wu, Xinyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Ming</au><au>Tian, Dingkui</au><au>Li, Feng</au><au>Chen, Ziqiang</au><au>Zhu, Yuanpei</au><au>Shang, Weiwei</au><au>Zhang, Li</au><au>Wu, Xinyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Knowledge Transfer-Based Personalized Human-Robot Interaction Control Method for Lower Limb Exoskeletons</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>24</volume><issue>23</issue><spage>39490</spage><epage>39502</epage><pages>39490-39502</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Accurate intent recognition by patients while wearing exoskeletons is crucial during their rehabilitation exercises. In this article, a transfer learning framework for human-robot interaction (EMGTnet-KTD) is proposed to predict human movement intentions in human-robot interactions through surface electromyography (sEMG) signals. EMGTnet-KTD consists of a pretrained EMGTnet model and a knowledge transfer module. First, EMGTnet is designed based on a Transformer network. A temporal and spatial domain feature fusion module has been introduced on top of the Transformer network, and the inputs have been reconfigured to enable it to utilize the relationship between before and after human actions. In addition, the knowledge transfer module is composed of a feature extraction layer, a noise reduction layer, and the personalized human lower limb dynamics controller. To evaluate the effectiveness of the proposed method, an experimental validation of our self-collected dataset from seven subjects is performed. The results show that our method achieves better results than other continuous motion prediction methods. Finally, to validate that the generation angle conforms to human physiology, walking experiments involving the use of an exoskeleton are conducted. The experiments demonstrate the effectiveness of the proposed framework and its implementability for exoskeletons.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3479239</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0004-7814-1513</orcidid><orcidid>https://orcid.org/0000-0001-7541-2198</orcidid><orcidid>https://orcid.org/0009-0000-6997-2586</orcidid><orcidid>https://orcid.org/0000-0001-6130-7821</orcidid><orcidid>https://orcid.org/0009-0004-6575-1128</orcidid><orcidid>https://orcid.org/0009-0001-6888-2084</orcidid><orcidid>https://orcid.org/0000-0003-1152-8962</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-12, Vol.24 (23), p.39490-39502 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2024_3479239 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Control methods Customization Effectiveness Exoskeleton Exoskeletons Feature extraction Human engineering Human motion Human-robot interaction Intent recognition Knowledge management Knowledge transfer Legged locomotion Modules Muscles Noise prediction personalized intent recognition Robot control Robots Sensors surface electromyography (sEMG) Transfer learning Transformers |
title | A Knowledge Transfer-Based Personalized Human-Robot Interaction Control Method for Lower Limb Exoskeletons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Knowledge%20Transfer-Based%20Personalized%20Human-Robot%20Interaction%20Control%20Method%20for%20Lower%20Limb%20Exoskeletons&rft.jtitle=IEEE%20sensors%20journal&rft.au=Yang,%20Ming&rft.date=2024-12-01&rft.volume=24&rft.issue=23&rft.spage=39490&rft.epage=39502&rft.pages=39490-39502&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3479239&rft_dat=%3Cproquest_RIE%3E3133498152%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133498152&rft_id=info:pmid/&rft_ieee_id=10723275&rfr_iscdi=true |