A Fusion of Graph- and Grid-Based Hybrid Model of Object Detection and Semantic Segmentation for 4-D Millimeter-Wave Radar

The next-generation 4-D millimeter-wave radar can provide rich information and dense point cloud and perceive the environment under all-weather and all-operating conditions, making it very suitable for autonomous driving systems. However, the existing object detection and semantic segmentation model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-12, Vol.24 (24), p.42268-42280
Hauptverfasser: Wang, Hongyan, Huang, Zifeng, Ma, Jiakang, Feng, Huimei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42280
container_issue 24
container_start_page 42268
container_title IEEE sensors journal
container_volume 24
creator Wang, Hongyan
Huang, Zifeng
Ma, Jiakang
Feng, Huimei
description The next-generation 4-D millimeter-wave radar can provide rich information and dense point cloud and perceive the environment under all-weather and all-operating conditions, making it very suitable for autonomous driving systems. However, the existing object detection and semantic segmentation models based on 4-D millimeter-wave radar are usually directly transplanted from light laser detection and ranging (LiDAR), which cannot effectively adapt to the millimeter-wave radar point cloud features, resulting in poor detection performance. Concerning this, a hybrid model for 4-D millimeter-wave radar object detection and semantic segmentation is developed here via fusing graph and grid. A graph neural network (GNN) module named radar adaptive multichannel GNN (RAMGNN) is first designed, which leverages topology graphs and feature maps to propagate and update point cloud features. The node embeddings outputted from RAMGNN can be directly used for semantic segmentation and serve as a point cloud feature encoder for subsequent object detection. In what follows, the point cloud is projected onto a 2-D bird's-eye view (BEV) grid, and its multiscale features can be extracted exploiting a backbone network with channel attention mechanism. Finally, multiscale features are fused to achieve effective object detection and semantic segmentation. Experimental results conducted on the publicly available dataset view-of-delft (VoD) demonstrate that the proposed model outperforms state-of-the-art algorithms in terms of both object detection performance and semantic segmentation quality.
doi_str_mv 10.1109/JSEN.2024.3479214
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2024_3479214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10745207</ieee_id><sourcerecordid>3146589035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-9dbbaee7c3b9e72085fb3ad4875cdac45ffcec506c4488d3ffcfad2bba61a8d43</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhosoOKc_QPAi4HVm0iRNezn3qWwOnKJ3JU1OtaMfM-mE-etN3S68Ou8hz5MDbxBcUzKglCR3j-vJ0yAkIR8wLpOQ8pOgR4WIMZU8Pu0yI5gz-X4eXDi3IYQmUshe8DNE050rmho1OZpZtf3ESNXGx8Lge-XAoPk-8wtaNgbKjlplG9AtGkPrR2d2_BoqVbeF9uGjgrpVfy95YxHHY7QsyrKovGDxm_oG9KyMspfBWa5KB1fH2Q9ep5OX0RwvVrOH0XCBNZVRixOTZQpAapYlIEMSizxjyvBYCm2U5iLPNWhBIs15HBvm11yZ0EsRVbHhrB_cHv7d2uZrB65NN83O1v5kyiiPRJwQJjxFD5S2jXMW8nRri0rZfUpJ2lWcdhWnXcXpsWLv3BycAgD-8ZKLkEj2C-0KeNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146589035</pqid></control><display><type>article</type><title>A Fusion of Graph- and Grid-Based Hybrid Model of Object Detection and Semantic Segmentation for 4-D Millimeter-Wave Radar</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Hongyan ; Huang, Zifeng ; Ma, Jiakang ; Feng, Huimei</creator><creatorcontrib>Wang, Hongyan ; Huang, Zifeng ; Ma, Jiakang ; Feng, Huimei</creatorcontrib><description>The next-generation 4-D millimeter-wave radar can provide rich information and dense point cloud and perceive the environment under all-weather and all-operating conditions, making it very suitable for autonomous driving systems. However, the existing object detection and semantic segmentation models based on 4-D millimeter-wave radar are usually directly transplanted from light laser detection and ranging (LiDAR), which cannot effectively adapt to the millimeter-wave radar point cloud features, resulting in poor detection performance. Concerning this, a hybrid model for 4-D millimeter-wave radar object detection and semantic segmentation is developed here via fusing graph and grid. A graph neural network (GNN) module named radar adaptive multichannel GNN (RAMGNN) is first designed, which leverages topology graphs and feature maps to propagate and update point cloud features. The node embeddings outputted from RAMGNN can be directly used for semantic segmentation and serve as a point cloud feature encoder for subsequent object detection. In what follows, the point cloud is projected onto a 2-D bird's-eye view (BEV) grid, and its multiscale features can be extracted exploiting a backbone network with channel attention mechanism. Finally, multiscale features are fused to achieve effective object detection and semantic segmentation. Experimental results conducted on the publicly available dataset view-of-delft (VoD) demonstrate that the proposed model outperforms state-of-the-art algorithms in terms of both object detection performance and semantic segmentation quality.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3479214</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>4-D millimeter-wave radar ; Algorithms ; automatic driving ; Feature extraction ; Feature maps ; graph neural network (GNN) ; Graph neural networks ; Image segmentation ; Laser radar ; Millimeter wave radar ; Millimeter waves ; Object detection ; Point cloud compression ; Radar ; Radar cross-sections ; Radar detection ; Semantic segmentation ; Semantics ; Sensors ; Topology</subject><ispartof>IEEE sensors journal, 2024-12, Vol.24 (24), p.42268-42280</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-9dbbaee7c3b9e72085fb3ad4875cdac45ffcec506c4488d3ffcfad2bba61a8d43</cites><orcidid>0000-0003-1974-8660</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10745207$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10745207$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Hongyan</creatorcontrib><creatorcontrib>Huang, Zifeng</creatorcontrib><creatorcontrib>Ma, Jiakang</creatorcontrib><creatorcontrib>Feng, Huimei</creatorcontrib><title>A Fusion of Graph- and Grid-Based Hybrid Model of Object Detection and Semantic Segmentation for 4-D Millimeter-Wave Radar</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The next-generation 4-D millimeter-wave radar can provide rich information and dense point cloud and perceive the environment under all-weather and all-operating conditions, making it very suitable for autonomous driving systems. However, the existing object detection and semantic segmentation models based on 4-D millimeter-wave radar are usually directly transplanted from light laser detection and ranging (LiDAR), which cannot effectively adapt to the millimeter-wave radar point cloud features, resulting in poor detection performance. Concerning this, a hybrid model for 4-D millimeter-wave radar object detection and semantic segmentation is developed here via fusing graph and grid. A graph neural network (GNN) module named radar adaptive multichannel GNN (RAMGNN) is first designed, which leverages topology graphs and feature maps to propagate and update point cloud features. The node embeddings outputted from RAMGNN can be directly used for semantic segmentation and serve as a point cloud feature encoder for subsequent object detection. In what follows, the point cloud is projected onto a 2-D bird's-eye view (BEV) grid, and its multiscale features can be extracted exploiting a backbone network with channel attention mechanism. Finally, multiscale features are fused to achieve effective object detection and semantic segmentation. Experimental results conducted on the publicly available dataset view-of-delft (VoD) demonstrate that the proposed model outperforms state-of-the-art algorithms in terms of both object detection performance and semantic segmentation quality.</description><subject>4-D millimeter-wave radar</subject><subject>Algorithms</subject><subject>automatic driving</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>graph neural network (GNN)</subject><subject>Graph neural networks</subject><subject>Image segmentation</subject><subject>Laser radar</subject><subject>Millimeter wave radar</subject><subject>Millimeter waves</subject><subject>Object detection</subject><subject>Point cloud compression</subject><subject>Radar</subject><subject>Radar cross-sections</subject><subject>Radar detection</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Topology</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhosoOKc_QPAi4HVm0iRNezn3qWwOnKJ3JU1OtaMfM-mE-etN3S68Ou8hz5MDbxBcUzKglCR3j-vJ0yAkIR8wLpOQ8pOgR4WIMZU8Pu0yI5gz-X4eXDi3IYQmUshe8DNE050rmho1OZpZtf3ESNXGx8Lge-XAoPk-8wtaNgbKjlplG9AtGkPrR2d2_BoqVbeF9uGjgrpVfy95YxHHY7QsyrKovGDxm_oG9KyMspfBWa5KB1fH2Q9ep5OX0RwvVrOH0XCBNZVRixOTZQpAapYlIEMSizxjyvBYCm2U5iLPNWhBIs15HBvm11yZ0EsRVbHhrB_cHv7d2uZrB65NN83O1v5kyiiPRJwQJjxFD5S2jXMW8nRri0rZfUpJ2lWcdhWnXcXpsWLv3BycAgD-8ZKLkEj2C-0KeNQ</recordid><startdate>20241215</startdate><enddate>20241215</enddate><creator>Wang, Hongyan</creator><creator>Huang, Zifeng</creator><creator>Ma, Jiakang</creator><creator>Feng, Huimei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1974-8660</orcidid></search><sort><creationdate>20241215</creationdate><title>A Fusion of Graph- and Grid-Based Hybrid Model of Object Detection and Semantic Segmentation for 4-D Millimeter-Wave Radar</title><author>Wang, Hongyan ; Huang, Zifeng ; Ma, Jiakang ; Feng, Huimei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-9dbbaee7c3b9e72085fb3ad4875cdac45ffcec506c4488d3ffcfad2bba61a8d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>4-D millimeter-wave radar</topic><topic>Algorithms</topic><topic>automatic driving</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>graph neural network (GNN)</topic><topic>Graph neural networks</topic><topic>Image segmentation</topic><topic>Laser radar</topic><topic>Millimeter wave radar</topic><topic>Millimeter waves</topic><topic>Object detection</topic><topic>Point cloud compression</topic><topic>Radar</topic><topic>Radar cross-sections</topic><topic>Radar detection</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hongyan</creatorcontrib><creatorcontrib>Huang, Zifeng</creatorcontrib><creatorcontrib>Ma, Jiakang</creatorcontrib><creatorcontrib>Feng, Huimei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Hongyan</au><au>Huang, Zifeng</au><au>Ma, Jiakang</au><au>Feng, Huimei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fusion of Graph- and Grid-Based Hybrid Model of Object Detection and Semantic Segmentation for 4-D Millimeter-Wave Radar</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-12-15</date><risdate>2024</risdate><volume>24</volume><issue>24</issue><spage>42268</spage><epage>42280</epage><pages>42268-42280</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The next-generation 4-D millimeter-wave radar can provide rich information and dense point cloud and perceive the environment under all-weather and all-operating conditions, making it very suitable for autonomous driving systems. However, the existing object detection and semantic segmentation models based on 4-D millimeter-wave radar are usually directly transplanted from light laser detection and ranging (LiDAR), which cannot effectively adapt to the millimeter-wave radar point cloud features, resulting in poor detection performance. Concerning this, a hybrid model for 4-D millimeter-wave radar object detection and semantic segmentation is developed here via fusing graph and grid. A graph neural network (GNN) module named radar adaptive multichannel GNN (RAMGNN) is first designed, which leverages topology graphs and feature maps to propagate and update point cloud features. The node embeddings outputted from RAMGNN can be directly used for semantic segmentation and serve as a point cloud feature encoder for subsequent object detection. In what follows, the point cloud is projected onto a 2-D bird's-eye view (BEV) grid, and its multiscale features can be extracted exploiting a backbone network with channel attention mechanism. Finally, multiscale features are fused to achieve effective object detection and semantic segmentation. Experimental results conducted on the publicly available dataset view-of-delft (VoD) demonstrate that the proposed model outperforms state-of-the-art algorithms in terms of both object detection performance and semantic segmentation quality.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3479214</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1974-8660</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-12, Vol.24 (24), p.42268-42280
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2024_3479214
source IEEE Electronic Library (IEL)
subjects 4-D millimeter-wave radar
Algorithms
automatic driving
Feature extraction
Feature maps
graph neural network (GNN)
Graph neural networks
Image segmentation
Laser radar
Millimeter wave radar
Millimeter waves
Object detection
Point cloud compression
Radar
Radar cross-sections
Radar detection
Semantic segmentation
Semantics
Sensors
Topology
title A Fusion of Graph- and Grid-Based Hybrid Model of Object Detection and Semantic Segmentation for 4-D Millimeter-Wave Radar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T08%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fusion%20of%20Graph-%20and%20Grid-Based%20Hybrid%20Model%20of%20Object%20Detection%20and%20Semantic%20Segmentation%20for%204-D%20Millimeter-Wave%20Radar&rft.jtitle=IEEE%20sensors%20journal&rft.au=Wang,%20Hongyan&rft.date=2024-12-15&rft.volume=24&rft.issue=24&rft.spage=42268&rft.epage=42280&rft.pages=42268-42280&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3479214&rft_dat=%3Cproquest_RIE%3E3146589035%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146589035&rft_id=info:pmid/&rft_ieee_id=10745207&rfr_iscdi=true