A Prior Knowledge Embedding Contrastive Attention Learning Network for Variable Working Conditions Bearing Fault Diagnosis With Small Samples

In practical industrial applications, rolling bearing fault diagnosis faces significant challenges due to the difficulty in collecting fault data, resulting in a scarcity of available data. This scarcity undermines the accuracy, robustness, and generalization capabilities of diagnostics in complex s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-01, Vol.24 (23), p.39967-39980
Hauptverfasser: Qiao, Wan, Liu, Xiuli, Huang, Jinpeng, Wu, Guoxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39980
container_issue 23
container_start_page 39967
container_title IEEE sensors journal
container_volume 24
creator Qiao, Wan
Liu, Xiuli
Huang, Jinpeng
Wu, Guoxin
description In practical industrial applications, rolling bearing fault diagnosis faces significant challenges due to the difficulty in collecting fault data, resulting in a scarcity of available data. This scarcity undermines the accuracy, robustness, and generalization capabilities of diagnostics in complex scenarios. Furthermore, traditional methods perform poorly under conditions of limited data and complex operating environments. To address these challenges, a prior knowledge embedding contrastive attention learning network (PKECALN) is proposed. PKECALN integrates feature extraction, prior knowledge (PK) embedding, and fault classification into a unified framework based on contrastive learning (CL). The proposed approach employs a 1-D deep convolutional neural network (1D-DCNN) combined with a custom-designed sequential attention module (SAM) to deeply extract multiscale time-frequency fault features. In addition, the use of CL effectively mitigates the problem of data scarcity. The model leverages a PK embedding mechanism, achieving a dual-drive approach of data and knowledge. This mechanism enables the model to focus on critical feature frequency information and guides the learning of fundamental characteristics of fault signals, thereby enhancing the accuracy of bearing fault diagnosis. A composite loss function tailored for this network is designed using contrastive loss, cross-entropy loss, and mean squared error (mse). Two case studies validate the feasibility and effectiveness of PKECALN in complex application scenarios, such as small-sample sizes and variable speeds. In addition, one of these case studies includes ablation experiments and interpretability analysis.
doi_str_mv 10.1109/JSEN.2024.3477456
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2024_3477456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10720674</ieee_id><sourcerecordid>3133498011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c911-95482e593e5536711b344a37c6639e20289b816bcf9204295e3773adff4efdca3</originalsourceid><addsrcrecordid>eNpNkE1OwzAQRiMEEqVwACQWllin2LEdx8tSWv6qgtSKsoucZFJckrjYLhWH4M4kahesZjTzvRnpBcElwQNCsLx5mo9ngwhHbECZEIzHR0GPcJ6ERLDkuOspDhkV76fBmXNrjIkUXPSC3yF6tdpY9NyYXQXFCtC4zqAodLNCI9N4q5zX34CG3kPjtWnQFJRtuvUM_M7YT1S2-JuyWmUVoGU7ObCF7vIO3bZAN5qobeXRnVarxjjt0FL7DzSvVVWhuao3Fbjz4KRUlYOLQ-0Hi8l4MXoIpy_3j6PhNMwlIaHkLImASwqc01gQklHGFBV5HFMJrYREZgmJs7yUEWaR5ECFoKooSwZlkSvaD673ZzfWfG3B-XRttrZpP6aUUMpkgglpU2Sfyq1xzkKZbqyulf1JCU476WknPe2kpwfpLXO1ZzQA_MuLCMeC0T8o238f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133498011</pqid></control><display><type>article</type><title>A Prior Knowledge Embedding Contrastive Attention Learning Network for Variable Working Conditions Bearing Fault Diagnosis With Small Samples</title><source>IEEE Electronic Library (IEL)</source><creator>Qiao, Wan ; Liu, Xiuli ; Huang, Jinpeng ; Wu, Guoxin</creator><creatorcontrib>Qiao, Wan ; Liu, Xiuli ; Huang, Jinpeng ; Wu, Guoxin</creatorcontrib><description>In practical industrial applications, rolling bearing fault diagnosis faces significant challenges due to the difficulty in collecting fault data, resulting in a scarcity of available data. This scarcity undermines the accuracy, robustness, and generalization capabilities of diagnostics in complex scenarios. Furthermore, traditional methods perform poorly under conditions of limited data and complex operating environments. To address these challenges, a prior knowledge embedding contrastive attention learning network (PKECALN) is proposed. PKECALN integrates feature extraction, prior knowledge (PK) embedding, and fault classification into a unified framework based on contrastive learning (CL). The proposed approach employs a 1-D deep convolutional neural network (1D-DCNN) combined with a custom-designed sequential attention module (SAM) to deeply extract multiscale time-frequency fault features. In addition, the use of CL effectively mitigates the problem of data scarcity. The model leverages a PK embedding mechanism, achieving a dual-drive approach of data and knowledge. This mechanism enables the model to focus on critical feature frequency information and guides the learning of fundamental characteristics of fault signals, thereby enhancing the accuracy of bearing fault diagnosis. A composite loss function tailored for this network is designed using contrastive loss, cross-entropy loss, and mean squared error (mse). Two case studies validate the feasibility and effectiveness of PKECALN in complex application scenarios, such as small-sample sizes and variable speeds. In addition, one of these case studies includes ablation experiments and interpretability analysis.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3477456</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ablation ; Artificial neural networks ; Case studies ; Contrastive learning ; Contrastive learning (CL) ; Convolution ; convolutional neural network (CNN) ; Data models ; Embedding ; Error analysis ; Fault diagnosis ; Feasibility studies ; Feature extraction ; Industrial applications ; Kernel ; knowledge embedding ; Learning ; Monitoring ; Robustness ; Roller bearings ; sequential attention mechanism ; Vectors ; Vibrations</subject><ispartof>IEEE sensors journal, 2024-01, Vol.24 (23), p.39967-39980</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0005-8689-2971 ; 0009-0008-8449-8155 ; 0009-0009-1069-6068 ; 0009-0009-0459-0048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10720674$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10720674$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qiao, Wan</creatorcontrib><creatorcontrib>Liu, Xiuli</creatorcontrib><creatorcontrib>Huang, Jinpeng</creatorcontrib><creatorcontrib>Wu, Guoxin</creatorcontrib><title>A Prior Knowledge Embedding Contrastive Attention Learning Network for Variable Working Conditions Bearing Fault Diagnosis With Small Samples</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In practical industrial applications, rolling bearing fault diagnosis faces significant challenges due to the difficulty in collecting fault data, resulting in a scarcity of available data. This scarcity undermines the accuracy, robustness, and generalization capabilities of diagnostics in complex scenarios. Furthermore, traditional methods perform poorly under conditions of limited data and complex operating environments. To address these challenges, a prior knowledge embedding contrastive attention learning network (PKECALN) is proposed. PKECALN integrates feature extraction, prior knowledge (PK) embedding, and fault classification into a unified framework based on contrastive learning (CL). The proposed approach employs a 1-D deep convolutional neural network (1D-DCNN) combined with a custom-designed sequential attention module (SAM) to deeply extract multiscale time-frequency fault features. In addition, the use of CL effectively mitigates the problem of data scarcity. The model leverages a PK embedding mechanism, achieving a dual-drive approach of data and knowledge. This mechanism enables the model to focus on critical feature frequency information and guides the learning of fundamental characteristics of fault signals, thereby enhancing the accuracy of bearing fault diagnosis. A composite loss function tailored for this network is designed using contrastive loss, cross-entropy loss, and mean squared error (mse). Two case studies validate the feasibility and effectiveness of PKECALN in complex application scenarios, such as small-sample sizes and variable speeds. In addition, one of these case studies includes ablation experiments and interpretability analysis.</description><subject>Ablation</subject><subject>Artificial neural networks</subject><subject>Case studies</subject><subject>Contrastive learning</subject><subject>Contrastive learning (CL)</subject><subject>Convolution</subject><subject>convolutional neural network (CNN)</subject><subject>Data models</subject><subject>Embedding</subject><subject>Error analysis</subject><subject>Fault diagnosis</subject><subject>Feasibility studies</subject><subject>Feature extraction</subject><subject>Industrial applications</subject><subject>Kernel</subject><subject>knowledge embedding</subject><subject>Learning</subject><subject>Monitoring</subject><subject>Robustness</subject><subject>Roller bearings</subject><subject>sequential attention mechanism</subject><subject>Vectors</subject><subject>Vibrations</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1OwzAQRiMEEqVwACQWllin2LEdx8tSWv6qgtSKsoucZFJckrjYLhWH4M4kahesZjTzvRnpBcElwQNCsLx5mo9ngwhHbECZEIzHR0GPcJ6ERLDkuOspDhkV76fBmXNrjIkUXPSC3yF6tdpY9NyYXQXFCtC4zqAodLNCI9N4q5zX34CG3kPjtWnQFJRtuvUM_M7YT1S2-JuyWmUVoGU7ObCF7vIO3bZAN5qobeXRnVarxjjt0FL7DzSvVVWhuao3Fbjz4KRUlYOLQ-0Hi8l4MXoIpy_3j6PhNMwlIaHkLImASwqc01gQklHGFBV5HFMJrYREZgmJs7yUEWaR5ECFoKooSwZlkSvaD673ZzfWfG3B-XRttrZpP6aUUMpkgglpU2Sfyq1xzkKZbqyulf1JCU476WknPe2kpwfpLXO1ZzQA_MuLCMeC0T8o238f</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Qiao, Wan</creator><creator>Liu, Xiuli</creator><creator>Huang, Jinpeng</creator><creator>Wu, Guoxin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0005-8689-2971</orcidid><orcidid>https://orcid.org/0009-0008-8449-8155</orcidid><orcidid>https://orcid.org/0009-0009-1069-6068</orcidid><orcidid>https://orcid.org/0009-0009-0459-0048</orcidid></search><sort><creationdate>20240101</creationdate><title>A Prior Knowledge Embedding Contrastive Attention Learning Network for Variable Working Conditions Bearing Fault Diagnosis With Small Samples</title><author>Qiao, Wan ; Liu, Xiuli ; Huang, Jinpeng ; Wu, Guoxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c911-95482e593e5536711b344a37c6639e20289b816bcf9204295e3773adff4efdca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Artificial neural networks</topic><topic>Case studies</topic><topic>Contrastive learning</topic><topic>Contrastive learning (CL)</topic><topic>Convolution</topic><topic>convolutional neural network (CNN)</topic><topic>Data models</topic><topic>Embedding</topic><topic>Error analysis</topic><topic>Fault diagnosis</topic><topic>Feasibility studies</topic><topic>Feature extraction</topic><topic>Industrial applications</topic><topic>Kernel</topic><topic>knowledge embedding</topic><topic>Learning</topic><topic>Monitoring</topic><topic>Robustness</topic><topic>Roller bearings</topic><topic>sequential attention mechanism</topic><topic>Vectors</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Wan</creatorcontrib><creatorcontrib>Liu, Xiuli</creatorcontrib><creatorcontrib>Huang, Jinpeng</creatorcontrib><creatorcontrib>Wu, Guoxin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiao, Wan</au><au>Liu, Xiuli</au><au>Huang, Jinpeng</au><au>Wu, Guoxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Prior Knowledge Embedding Contrastive Attention Learning Network for Variable Working Conditions Bearing Fault Diagnosis With Small Samples</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>24</volume><issue>23</issue><spage>39967</spage><epage>39980</epage><pages>39967-39980</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In practical industrial applications, rolling bearing fault diagnosis faces significant challenges due to the difficulty in collecting fault data, resulting in a scarcity of available data. This scarcity undermines the accuracy, robustness, and generalization capabilities of diagnostics in complex scenarios. Furthermore, traditional methods perform poorly under conditions of limited data and complex operating environments. To address these challenges, a prior knowledge embedding contrastive attention learning network (PKECALN) is proposed. PKECALN integrates feature extraction, prior knowledge (PK) embedding, and fault classification into a unified framework based on contrastive learning (CL). The proposed approach employs a 1-D deep convolutional neural network (1D-DCNN) combined with a custom-designed sequential attention module (SAM) to deeply extract multiscale time-frequency fault features. In addition, the use of CL effectively mitigates the problem of data scarcity. The model leverages a PK embedding mechanism, achieving a dual-drive approach of data and knowledge. This mechanism enables the model to focus on critical feature frequency information and guides the learning of fundamental characteristics of fault signals, thereby enhancing the accuracy of bearing fault diagnosis. A composite loss function tailored for this network is designed using contrastive loss, cross-entropy loss, and mean squared error (mse). Two case studies validate the feasibility and effectiveness of PKECALN in complex application scenarios, such as small-sample sizes and variable speeds. In addition, one of these case studies includes ablation experiments and interpretability analysis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3477456</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0005-8689-2971</orcidid><orcidid>https://orcid.org/0009-0008-8449-8155</orcidid><orcidid>https://orcid.org/0009-0009-1069-6068</orcidid><orcidid>https://orcid.org/0009-0009-0459-0048</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-01, Vol.24 (23), p.39967-39980
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2024_3477456
source IEEE Electronic Library (IEL)
subjects Ablation
Artificial neural networks
Case studies
Contrastive learning
Contrastive learning (CL)
Convolution
convolutional neural network (CNN)
Data models
Embedding
Error analysis
Fault diagnosis
Feasibility studies
Feature extraction
Industrial applications
Kernel
knowledge embedding
Learning
Monitoring
Robustness
Roller bearings
sequential attention mechanism
Vectors
Vibrations
title A Prior Knowledge Embedding Contrastive Attention Learning Network for Variable Working Conditions Bearing Fault Diagnosis With Small Samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T22%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Prior%20Knowledge%20Embedding%20Contrastive%20Attention%20Learning%20Network%20for%20Variable%20Working%20Conditions%20Bearing%20Fault%20Diagnosis%20With%20Small%20Samples&rft.jtitle=IEEE%20sensors%20journal&rft.au=Qiao,%20Wan&rft.date=2024-01-01&rft.volume=24&rft.issue=23&rft.spage=39967&rft.epage=39980&rft.pages=39967-39980&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3477456&rft_dat=%3Cproquest_RIE%3E3133498011%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3133498011&rft_id=info:pmid/&rft_ieee_id=10720674&rfr_iscdi=true