QCM Electrode Configurations for Enhanced Mass Distribution and Sensitivity

This work presents the first fabrication and experimental validation of a novel electrode design approach for enhancing the mass sensitivity of quartz crystal microbalances (QCMs). The development of unique QCM electrode configurations includes a study of mass loading area distribution and its impac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-12, Vol.24 (23), p.38843-38850
Hauptverfasser: Abu-Libdeh, Aya, Elnemr, Youssef Ezzat, Raj, Gian Carlo Antony, Ye, Bruce Shilin, Rinzan, Mohamed, Emadi, Arezoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 38850
container_issue 23
container_start_page 38843
container_title IEEE sensors journal
container_volume 24
creator Abu-Libdeh, Aya
Elnemr, Youssef Ezzat
Raj, Gian Carlo Antony
Ye, Bruce Shilin
Rinzan, Mohamed
Emadi, Arezoo
description This work presents the first fabrication and experimental validation of a novel electrode design approach for enhancing the mass sensitivity of quartz crystal microbalances (QCMs). The development of unique QCM electrode configurations includes a study of mass loading area distribution and its impact on resonant frequency shift, a key parameter that defines mass sensing performance. Finite element analysis (FEA) is conducted to identify areas of opportunity where localized energy trapping occurs and simulate the sensing performances of the configured electrode topologies compared to the conventional circular design. Theoretical models are experimentally validated through the fabrication of 5 MHz QCM sensors with nonconventional designs and the utilization of an automated controlled environment and sensor readout system. The unique QCMs presented herein exhibit noticeably higher resonant frequency shifts in response to variations in water vapor concentration, where the observed shift in frequency serves as an indicator for sensing performance. Experimental results reveal that unique topologies based on the novel distribution of area for improving mass sensitivity (DAIS) electrode design approach, featuring patterns of annularly distributed small electrodes, effectively utilize the energy trapping effect, and outperform the conventional QCM design.
doi_str_mv 10.1109/JSEN.2024.3477264
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2024_3477264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10719634</ieee_id><sourcerecordid>10_1109_JSEN_2024_3477264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c634-bde87e73db8019e0c1e8ea81dec4ca2a3a3e08308799c9844ea45cf59e7b1fac3</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWKsPILjIC0xNJpkmWco4_raKtAt3IZPcaKRmJJkKfXtnaBeuzoVzzuXwIXRJyYxSoq6fVs3LrCQlnzEuRDnnR2hCq0oWVHB5PN6MFJyJ91N0lvMXIVSJSkzQ81u9xM0GbJ86B7juog8f22T60MWMfZdwEz9NtODw0uSMb0PuU2i3o49NdHgFMYc-_IZ-d45OvNlkuDjoFK3vmnX9UCxe7x_rm0Vh54wXrQMpQDDXymEEEEtBgpHUgeXWlIYZBkQyIoVSVknOwfDK-kqBaKk3lk0R3b-1qcs5gdc_KXybtNOU6BGGHmHoEYY-wBg6V_tOAIB_eUHVsIn9AXwEXNY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>QCM Electrode Configurations for Enhanced Mass Distribution and Sensitivity</title><source>IEEE Electronic Library (IEL)</source><creator>Abu-Libdeh, Aya ; Elnemr, Youssef Ezzat ; Raj, Gian Carlo Antony ; Ye, Bruce Shilin ; Rinzan, Mohamed ; Emadi, Arezoo</creator><creatorcontrib>Abu-Libdeh, Aya ; Elnemr, Youssef Ezzat ; Raj, Gian Carlo Antony ; Ye, Bruce Shilin ; Rinzan, Mohamed ; Emadi, Arezoo</creatorcontrib><description>This work presents the first fabrication and experimental validation of a novel electrode design approach for enhancing the mass sensitivity of quartz crystal microbalances (QCMs). The development of unique QCM electrode configurations includes a study of mass loading area distribution and its impact on resonant frequency shift, a key parameter that defines mass sensing performance. Finite element analysis (FEA) is conducted to identify areas of opportunity where localized energy trapping occurs and simulate the sensing performances of the configured electrode topologies compared to the conventional circular design. Theoretical models are experimentally validated through the fabrication of 5 MHz QCM sensors with nonconventional designs and the utilization of an automated controlled environment and sensor readout system. The unique QCMs presented herein exhibit noticeably higher resonant frequency shifts in response to variations in water vapor concentration, where the observed shift in frequency serves as an indicator for sensing performance. Experimental results reveal that unique topologies based on the novel distribution of area for improving mass sensitivity (DAIS) electrode design approach, featuring patterns of annularly distributed small electrodes, effectively utilize the energy trapping effect, and outperform the conventional QCM design.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3477264</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electrodes ; Energy trapping effect ; gravimetric sensing ; Load modeling ; Loading ; mass sensitivity ; Mathematical models ; microfabrication ; piezoelectricity ; quartz crystal microbalance (QCM) ; Quartz crystals ; Resonant frequency ; Sensitivity ; Sensors ; Topology ; Voltage</subject><ispartof>IEEE sensors journal, 2024-12, Vol.24 (23), p.38843-38850</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0009-4363-2888 ; 0000-0003-1336-8149 ; 0000-0003-2034-1120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10719634$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10719634$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abu-Libdeh, Aya</creatorcontrib><creatorcontrib>Elnemr, Youssef Ezzat</creatorcontrib><creatorcontrib>Raj, Gian Carlo Antony</creatorcontrib><creatorcontrib>Ye, Bruce Shilin</creatorcontrib><creatorcontrib>Rinzan, Mohamed</creatorcontrib><creatorcontrib>Emadi, Arezoo</creatorcontrib><title>QCM Electrode Configurations for Enhanced Mass Distribution and Sensitivity</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This work presents the first fabrication and experimental validation of a novel electrode design approach for enhancing the mass sensitivity of quartz crystal microbalances (QCMs). The development of unique QCM electrode configurations includes a study of mass loading area distribution and its impact on resonant frequency shift, a key parameter that defines mass sensing performance. Finite element analysis (FEA) is conducted to identify areas of opportunity where localized energy trapping occurs and simulate the sensing performances of the configured electrode topologies compared to the conventional circular design. Theoretical models are experimentally validated through the fabrication of 5 MHz QCM sensors with nonconventional designs and the utilization of an automated controlled environment and sensor readout system. The unique QCMs presented herein exhibit noticeably higher resonant frequency shifts in response to variations in water vapor concentration, where the observed shift in frequency serves as an indicator for sensing performance. Experimental results reveal that unique topologies based on the novel distribution of area for improving mass sensitivity (DAIS) electrode design approach, featuring patterns of annularly distributed small electrodes, effectively utilize the energy trapping effect, and outperform the conventional QCM design.</description><subject>Electrodes</subject><subject>Energy trapping effect</subject><subject>gravimetric sensing</subject><subject>Load modeling</subject><subject>Loading</subject><subject>mass sensitivity</subject><subject>Mathematical models</subject><subject>microfabrication</subject><subject>piezoelectricity</subject><subject>quartz crystal microbalance (QCM)</subject><subject>Quartz crystals</subject><subject>Resonant frequency</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Topology</subject><subject>Voltage</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1KAzEUhYMoWKsPILjIC0xNJpkmWco4_raKtAt3IZPcaKRmJJkKfXtnaBeuzoVzzuXwIXRJyYxSoq6fVs3LrCQlnzEuRDnnR2hCq0oWVHB5PN6MFJyJ91N0lvMXIVSJSkzQ81u9xM0GbJ86B7juog8f22T60MWMfZdwEz9NtODw0uSMb0PuU2i3o49NdHgFMYc-_IZ-d45OvNlkuDjoFK3vmnX9UCxe7x_rm0Vh54wXrQMpQDDXymEEEEtBgpHUgeXWlIYZBkQyIoVSVknOwfDK-kqBaKk3lk0R3b-1qcs5gdc_KXybtNOU6BGGHmHoEYY-wBg6V_tOAIB_eUHVsIn9AXwEXNY</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Abu-Libdeh, Aya</creator><creator>Elnemr, Youssef Ezzat</creator><creator>Raj, Gian Carlo Antony</creator><creator>Ye, Bruce Shilin</creator><creator>Rinzan, Mohamed</creator><creator>Emadi, Arezoo</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-4363-2888</orcidid><orcidid>https://orcid.org/0000-0003-1336-8149</orcidid><orcidid>https://orcid.org/0000-0003-2034-1120</orcidid></search><sort><creationdate>20241201</creationdate><title>QCM Electrode Configurations for Enhanced Mass Distribution and Sensitivity</title><author>Abu-Libdeh, Aya ; Elnemr, Youssef Ezzat ; Raj, Gian Carlo Antony ; Ye, Bruce Shilin ; Rinzan, Mohamed ; Emadi, Arezoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c634-bde87e73db8019e0c1e8ea81dec4ca2a3a3e08308799c9844ea45cf59e7b1fac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electrodes</topic><topic>Energy trapping effect</topic><topic>gravimetric sensing</topic><topic>Load modeling</topic><topic>Loading</topic><topic>mass sensitivity</topic><topic>Mathematical models</topic><topic>microfabrication</topic><topic>piezoelectricity</topic><topic>quartz crystal microbalance (QCM)</topic><topic>Quartz crystals</topic><topic>Resonant frequency</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Topology</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abu-Libdeh, Aya</creatorcontrib><creatorcontrib>Elnemr, Youssef Ezzat</creatorcontrib><creatorcontrib>Raj, Gian Carlo Antony</creatorcontrib><creatorcontrib>Ye, Bruce Shilin</creatorcontrib><creatorcontrib>Rinzan, Mohamed</creatorcontrib><creatorcontrib>Emadi, Arezoo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abu-Libdeh, Aya</au><au>Elnemr, Youssef Ezzat</au><au>Raj, Gian Carlo Antony</au><au>Ye, Bruce Shilin</au><au>Rinzan, Mohamed</au><au>Emadi, Arezoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QCM Electrode Configurations for Enhanced Mass Distribution and Sensitivity</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>24</volume><issue>23</issue><spage>38843</spage><epage>38850</epage><pages>38843-38850</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This work presents the first fabrication and experimental validation of a novel electrode design approach for enhancing the mass sensitivity of quartz crystal microbalances (QCMs). The development of unique QCM electrode configurations includes a study of mass loading area distribution and its impact on resonant frequency shift, a key parameter that defines mass sensing performance. Finite element analysis (FEA) is conducted to identify areas of opportunity where localized energy trapping occurs and simulate the sensing performances of the configured electrode topologies compared to the conventional circular design. Theoretical models are experimentally validated through the fabrication of 5 MHz QCM sensors with nonconventional designs and the utilization of an automated controlled environment and sensor readout system. The unique QCMs presented herein exhibit noticeably higher resonant frequency shifts in response to variations in water vapor concentration, where the observed shift in frequency serves as an indicator for sensing performance. Experimental results reveal that unique topologies based on the novel distribution of area for improving mass sensitivity (DAIS) electrode design approach, featuring patterns of annularly distributed small electrodes, effectively utilize the energy trapping effect, and outperform the conventional QCM design.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2024.3477264</doi><tpages>8</tpages><orcidid>https://orcid.org/0009-0009-4363-2888</orcidid><orcidid>https://orcid.org/0000-0003-1336-8149</orcidid><orcidid>https://orcid.org/0000-0003-2034-1120</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-12, Vol.24 (23), p.38843-38850
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2024_3477264
source IEEE Electronic Library (IEL)
subjects Electrodes
Energy trapping effect
gravimetric sensing
Load modeling
Loading
mass sensitivity
Mathematical models
microfabrication
piezoelectricity
quartz crystal microbalance (QCM)
Quartz crystals
Resonant frequency
Sensitivity
Sensors
Topology
Voltage
title QCM Electrode Configurations for Enhanced Mass Distribution and Sensitivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QCM%20Electrode%20Configurations%20for%20Enhanced%20Mass%20Distribution%20and%20Sensitivity&rft.jtitle=IEEE%20sensors%20journal&rft.au=Abu-Libdeh,%20Aya&rft.date=2024-12-01&rft.volume=24&rft.issue=23&rft.spage=38843&rft.epage=38850&rft.pages=38843-38850&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3477264&rft_dat=%3Ccrossref_RIE%3E10_1109_JSEN_2024_3477264%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10719634&rfr_iscdi=true