A Reliable Robot Localization Method Using LiDAR and GNSS Fusion Based on a Two-Step Particle Adjustment Strategy

Accurate localization is essential for robot autonomous navigation. The localization methods that rely overly on the global navigation satellite system (GNSS) are not reliable in urban environments where GNSS signals are vulnerable to occlusion. In this work, we fuse data from IMU, LiDAR, and GNSS w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-11, Vol.24 (22), p.37846-37858
Hauptverfasser: Tang, Wei, Huang, Anmin, Liu, Enbo, Wu, Jiale, Zhang, Renyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37858
container_issue 22
container_start_page 37846
container_title IEEE sensors journal
container_volume 24
creator Tang, Wei
Huang, Anmin
Liu, Enbo
Wu, Jiale
Zhang, Renyuan
description Accurate localization is essential for robot autonomous navigation. The localization methods that rely overly on the global navigation satellite system (GNSS) are not reliable in urban environments where GNSS signals are vulnerable to occlusion. In this work, we fuse data from IMU, LiDAR, and GNSS with a particle filter, presenting a novel method based on a two-step particle adjustment strategy. Our algorithm first uses GNSS data to evaluate the current particles and adjust their distribution if necessary. Subsequently, we use laser measurements to evaluate old particles and the reliability of the GNSS data, adjusting the particle distribution for correction. In addition, we use statistical features of point clouds for laser measurements, which transform the global map into a series of normal distribution models, and use these models to match with 3-D laser scans for particle state evaluation. Our method improves the processing efficiency of 3-D point cloud data and fully utilizes its 3-D features during localization. Experimental results demonstrate that our algorithm achieves higher localization accuracy on the publicly available KITTI dataset and in real campus environments. In addition, our algorithm consistently delivers precise localization in both open areas and GNSS-unavailable scenarios, showcasing superior reliability.
doi_str_mv 10.1109/JSEN.2024.3472470
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2024_3472470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10709853</ieee_id><sourcerecordid>3127777612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-299d119e19bb3b238a4cd4ed05e7c147ccd0dfc2b7d848fbb27a58efbdf662d03</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhhujiYj-ABMPm3gu7le77bEqoAbRUEi8NfsxxRLoQneJwV9vGzg4l5nD876TPEFwS_CAEJw-vOXD6YBiygeMC8oFPgt6JIqSkAienHc3wyFn4usyuHJuhTFJRSR6wS5DM1hXUq0BzayyHk2sluvqV_rK1ugd_Lc1aOGqeokm1XM2Q7I2aDzNczTauw55lA4Mag-J5j82zD1s0adsfKXbysys9s5voPYo9430sDxcBxelXDu4Oe1-sBgN508v4eRj_PqUTUJNROxDmqaGkBRIqhRTlCWSa8PB4AiEJlxobbApNVXCJDwplaJCRgmUypRxTA1m_eD-2Ltt7G4Pzhcru2_q9mXBCBXtxIS2FDlSurHONVAW26bayOZQEFx0ZovObNGZLU5m28zdMVMBwD9e4DSJGPsDBsd1GA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127777612</pqid></control><display><type>article</type><title>A Reliable Robot Localization Method Using LiDAR and GNSS Fusion Based on a Two-Step Particle Adjustment Strategy</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Wei ; Huang, Anmin ; Liu, Enbo ; Wu, Jiale ; Zhang, Renyuan</creator><creatorcontrib>Tang, Wei ; Huang, Anmin ; Liu, Enbo ; Wu, Jiale ; Zhang, Renyuan</creatorcontrib><description>Accurate localization is essential for robot autonomous navigation. The localization methods that rely overly on the global navigation satellite system (GNSS) are not reliable in urban environments where GNSS signals are vulnerable to occlusion. In this work, we fuse data from IMU, LiDAR, and GNSS with a particle filter, presenting a novel method based on a two-step particle adjustment strategy. Our algorithm first uses GNSS data to evaluate the current particles and adjust their distribution if necessary. Subsequently, we use laser measurements to evaluate old particles and the reliability of the GNSS data, adjusting the particle distribution for correction. In addition, we use statistical features of point clouds for laser measurements, which transform the global map into a series of normal distribution models, and use these models to match with 3-D laser scans for particle state evaluation. Our method improves the processing efficiency of 3-D point cloud data and fully utilizes its 3-D features during localization. Experimental results demonstrate that our algorithm achieves higher localization accuracy on the publicly available KITTI dataset and in real campus environments. In addition, our algorithm consistently delivers precise localization in both open areas and GNSS-unavailable scenarios, showcasing superior reliability.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3472470</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Autonomous navigation ; Global navigation satellite system ; Global navigation satellite system (GNSS) ; Laser modes ; Laser radar ; Lasers ; LiDAR ; Localization ; Localization method ; Location awareness ; Measurement by laser beam ; Normal distribution ; Occlusion ; outdoor mobile robot ; Point cloud compression ; Reliability ; robot localization ; Robot sensing systems ; Robots ; sensor fusion ; Sensors ; Statistical analysis ; Three dimensional models ; Three-dimensional displays ; Urban environments</subject><ispartof>IEEE sensors journal, 2024-11, Vol.24 (22), p.37846-37858</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0003-8670-6943 ; 0000-0002-7381-5046 ; 0000-0002-4142-5166 ; 0009-0007-7486-0598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10709853$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10709853$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Huang, Anmin</creatorcontrib><creatorcontrib>Liu, Enbo</creatorcontrib><creatorcontrib>Wu, Jiale</creatorcontrib><creatorcontrib>Zhang, Renyuan</creatorcontrib><title>A Reliable Robot Localization Method Using LiDAR and GNSS Fusion Based on a Two-Step Particle Adjustment Strategy</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Accurate localization is essential for robot autonomous navigation. The localization methods that rely overly on the global navigation satellite system (GNSS) are not reliable in urban environments where GNSS signals are vulnerable to occlusion. In this work, we fuse data from IMU, LiDAR, and GNSS with a particle filter, presenting a novel method based on a two-step particle adjustment strategy. Our algorithm first uses GNSS data to evaluate the current particles and adjust their distribution if necessary. Subsequently, we use laser measurements to evaluate old particles and the reliability of the GNSS data, adjusting the particle distribution for correction. In addition, we use statistical features of point clouds for laser measurements, which transform the global map into a series of normal distribution models, and use these models to match with 3-D laser scans for particle state evaluation. Our method improves the processing efficiency of 3-D point cloud data and fully utilizes its 3-D features during localization. Experimental results demonstrate that our algorithm achieves higher localization accuracy on the publicly available KITTI dataset and in real campus environments. In addition, our algorithm consistently delivers precise localization in both open areas and GNSS-unavailable scenarios, showcasing superior reliability.</description><subject>Algorithms</subject><subject>Autonomous navigation</subject><subject>Global navigation satellite system</subject><subject>Global navigation satellite system (GNSS)</subject><subject>Laser modes</subject><subject>Laser radar</subject><subject>Lasers</subject><subject>LiDAR</subject><subject>Localization</subject><subject>Localization method</subject><subject>Location awareness</subject><subject>Measurement by laser beam</subject><subject>Normal distribution</subject><subject>Occlusion</subject><subject>outdoor mobile robot</subject><subject>Point cloud compression</subject><subject>Reliability</subject><subject>robot localization</subject><subject>Robot sensing systems</subject><subject>Robots</subject><subject>sensor fusion</subject><subject>Sensors</subject><subject>Statistical analysis</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Urban environments</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhhujiYj-ABMPm3gu7le77bEqoAbRUEi8NfsxxRLoQneJwV9vGzg4l5nD876TPEFwS_CAEJw-vOXD6YBiygeMC8oFPgt6JIqSkAienHc3wyFn4usyuHJuhTFJRSR6wS5DM1hXUq0BzayyHk2sluvqV_rK1ugd_Lc1aOGqeokm1XM2Q7I2aDzNczTauw55lA4Mag-J5j82zD1s0adsfKXbysys9s5voPYo9430sDxcBxelXDu4Oe1-sBgN508v4eRj_PqUTUJNROxDmqaGkBRIqhRTlCWSa8PB4AiEJlxobbApNVXCJDwplaJCRgmUypRxTA1m_eD-2Ltt7G4Pzhcru2_q9mXBCBXtxIS2FDlSurHONVAW26bayOZQEFx0ZovObNGZLU5m28zdMVMBwD9e4DSJGPsDBsd1GA</recordid><startdate>20241115</startdate><enddate>20241115</enddate><creator>Tang, Wei</creator><creator>Huang, Anmin</creator><creator>Liu, Enbo</creator><creator>Wu, Jiale</creator><creator>Zhang, Renyuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0003-8670-6943</orcidid><orcidid>https://orcid.org/0000-0002-7381-5046</orcidid><orcidid>https://orcid.org/0000-0002-4142-5166</orcidid><orcidid>https://orcid.org/0009-0007-7486-0598</orcidid></search><sort><creationdate>20241115</creationdate><title>A Reliable Robot Localization Method Using LiDAR and GNSS Fusion Based on a Two-Step Particle Adjustment Strategy</title><author>Tang, Wei ; Huang, Anmin ; Liu, Enbo ; Wu, Jiale ; Zhang, Renyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-299d119e19bb3b238a4cd4ed05e7c147ccd0dfc2b7d848fbb27a58efbdf662d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Autonomous navigation</topic><topic>Global navigation satellite system</topic><topic>Global navigation satellite system (GNSS)</topic><topic>Laser modes</topic><topic>Laser radar</topic><topic>Lasers</topic><topic>LiDAR</topic><topic>Localization</topic><topic>Localization method</topic><topic>Location awareness</topic><topic>Measurement by laser beam</topic><topic>Normal distribution</topic><topic>Occlusion</topic><topic>outdoor mobile robot</topic><topic>Point cloud compression</topic><topic>Reliability</topic><topic>robot localization</topic><topic>Robot sensing systems</topic><topic>Robots</topic><topic>sensor fusion</topic><topic>Sensors</topic><topic>Statistical analysis</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Urban environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Huang, Anmin</creatorcontrib><creatorcontrib>Liu, Enbo</creatorcontrib><creatorcontrib>Wu, Jiale</creatorcontrib><creatorcontrib>Zhang, Renyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Wei</au><au>Huang, Anmin</au><au>Liu, Enbo</au><au>Wu, Jiale</au><au>Zhang, Renyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Reliable Robot Localization Method Using LiDAR and GNSS Fusion Based on a Two-Step Particle Adjustment Strategy</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-11-15</date><risdate>2024</risdate><volume>24</volume><issue>22</issue><spage>37846</spage><epage>37858</epage><pages>37846-37858</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Accurate localization is essential for robot autonomous navigation. The localization methods that rely overly on the global navigation satellite system (GNSS) are not reliable in urban environments where GNSS signals are vulnerable to occlusion. In this work, we fuse data from IMU, LiDAR, and GNSS with a particle filter, presenting a novel method based on a two-step particle adjustment strategy. Our algorithm first uses GNSS data to evaluate the current particles and adjust their distribution if necessary. Subsequently, we use laser measurements to evaluate old particles and the reliability of the GNSS data, adjusting the particle distribution for correction. In addition, we use statistical features of point clouds for laser measurements, which transform the global map into a series of normal distribution models, and use these models to match with 3-D laser scans for particle state evaluation. Our method improves the processing efficiency of 3-D point cloud data and fully utilizes its 3-D features during localization. Experimental results demonstrate that our algorithm achieves higher localization accuracy on the publicly available KITTI dataset and in real campus environments. In addition, our algorithm consistently delivers precise localization in both open areas and GNSS-unavailable scenarios, showcasing superior reliability.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3472470</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0003-8670-6943</orcidid><orcidid>https://orcid.org/0000-0002-7381-5046</orcidid><orcidid>https://orcid.org/0000-0002-4142-5166</orcidid><orcidid>https://orcid.org/0009-0007-7486-0598</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-11, Vol.24 (22), p.37846-37858
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2024_3472470
source IEEE Electronic Library (IEL)
subjects Algorithms
Autonomous navigation
Global navigation satellite system
Global navigation satellite system (GNSS)
Laser modes
Laser radar
Lasers
LiDAR
Localization
Localization method
Location awareness
Measurement by laser beam
Normal distribution
Occlusion
outdoor mobile robot
Point cloud compression
Reliability
robot localization
Robot sensing systems
Robots
sensor fusion
Sensors
Statistical analysis
Three dimensional models
Three-dimensional displays
Urban environments
title A Reliable Robot Localization Method Using LiDAR and GNSS Fusion Based on a Two-Step Particle Adjustment Strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A35%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Reliable%20Robot%20Localization%20Method%20Using%20LiDAR%20and%20GNSS%20Fusion%20Based%20on%20a%20Two-Step%20Particle%20Adjustment%20Strategy&rft.jtitle=IEEE%20sensors%20journal&rft.au=Tang,%20Wei&rft.date=2024-11-15&rft.volume=24&rft.issue=22&rft.spage=37846&rft.epage=37858&rft.pages=37846-37858&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3472470&rft_dat=%3Cproquest_RIE%3E3127777612%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127777612&rft_id=info:pmid/&rft_ieee_id=10709853&rfr_iscdi=true