An Ultrasensitive Low-to-Medium Vacuum Pressure Sensor Using a Resonant Microstructure
This article reports an ultrasensitive low-to-medium vacuum pressure sensor based on an electrothermally tuned and electrostatically actuated resonant microstructure. The concept is based on tracking the frequency difference shift of the first two modes of vibration of the microstructure, which mode...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-08, Vol.24 (15), p.23520-23526 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23526 |
---|---|
container_issue | 15 |
container_start_page | 23520 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Alcheikh, Nouha Ben Mbarek, Sofiane Younis, Mohammad I. |
description | This article reports an ultrasensitive low-to-medium vacuum pressure sensor based on an electrothermally tuned and electrostatically actuated resonant microstructure. The concept is based on tracking the frequency difference shift of the first two modes of vibration of the microstructure, which modes experience the phenomenon of veering (frequency avoided crossing) while being cooled/heated by the varying air pressure. We demonstrate the idea based on a V-shaped multistepped microbeam and track the first two resonance frequencies of the symmetric and antisymmetric vibration modes. The microresonator is sandwiched between four electrodes to electrostatically actuate the first two modes of vibration. The sensitivity improvement is demonstrated experimentally for low-to-medium vacuum pressure ranging from 48 mtorr to 760 torr. Based on the new concept, the microsensor shows an ultrahigh sensitivity compared to the state of the art. More than 64 times sensitivity magnification is demonstrated compared to those operated based on tracking the frequency shift of the first or second vibration mode alone. At medium-vacuum pressure range, the microsensor achieves the highest sensitivity of 385 320 ppm/torr with a low power consumption of around 0.7 \mu W. Moreover, we simulated the temperature dependence of the resonance frequency difference for a temperature range from 30 °C to 55 °C. The results show a minimal effect of this temperature variation. The proposed method is simple in principle and design, which makes the microsensor promising for high-performance resonate-based pressure sensor devices. |
doi_str_mv | 10.1109/JSEN.2024.3406163 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2024_3406163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10562254</ieee_id><sourcerecordid>3086434011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-ad52db19febd97bba2cf42e3f0b2601ead7c2752767f85ae9da176f871506ba63</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgsLLFO8dixnSwrVF5qAVFasbOcZIJSlaTYDoi_x1FZsLqzOHdmdAg5BzYBYPnVw3L2OOGMpxORMgVKHJARSJkloNPscJgFS1Kh347JifcbxiDXUo_IetrS1TY467H1TWi-kM677yR0yQKrpv-ga1v2MZ4det87pMvIdY6ufNO-U0tf0HetbQNdNKXrfHB9GSJ2So5qu_V49pdjsrqZvV7fJfOn2_vr6TwpQauQ2EryqoC8xqLKdVFYXtYpR1GzgisGaCtdci25VrrOpMW8srFXZxokU4VVYkwu93t3rvvs0Qez6XrXxpNGsEylUQZApGBPDS96h7XZuebDuh8DzAz6zKDPDPrMn77Yudh3GkT8x0vFuUzFL4AzbPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086434011</pqid></control><display><type>article</type><title>An Ultrasensitive Low-to-Medium Vacuum Pressure Sensor Using a Resonant Microstructure</title><source>IEEE Electronic Library (IEL)</source><creator>Alcheikh, Nouha ; Ben Mbarek, Sofiane ; Younis, Mohammad I.</creator><creatorcontrib>Alcheikh, Nouha ; Ben Mbarek, Sofiane ; Younis, Mohammad I.</creatorcontrib><description>This article reports an ultrasensitive low-to-medium vacuum pressure sensor based on an electrothermally tuned and electrostatically actuated resonant microstructure. The concept is based on tracking the frequency difference shift of the first two modes of vibration of the microstructure, which modes experience the phenomenon of veering (frequency avoided crossing) while being cooled/heated by the varying air pressure. We demonstrate the idea based on a V-shaped multistepped microbeam and track the first two resonance frequencies of the symmetric and antisymmetric vibration modes. The microresonator is sandwiched between four electrodes to electrostatically actuate the first two modes of vibration. The sensitivity improvement is demonstrated experimentally for low-to-medium vacuum pressure ranging from 48 mtorr to 760 torr. Based on the new concept, the microsensor shows an ultrahigh sensitivity compared to the state of the art. More than 64 times sensitivity magnification is demonstrated compared to those operated based on tracking the frequency shift of the first or second vibration mode alone. At medium-vacuum pressure range, the microsensor achieves the highest sensitivity of 385 320 ppm/torr with a low power consumption of around <inline-formula> <tex-math notation="LaTeX">0.7 \mu </tex-math></inline-formula>W. Moreover, we simulated the temperature dependence of the resonance frequency difference for a temperature range from 30 °C to 55 °C. The results show a minimal effect of this temperature variation. The proposed method is simple in principle and design, which makes the microsensor promising for high-performance resonate-based pressure sensor devices.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3406163</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Frequency measurement ; Frequency shift ; High sensitivity ; low power ; Microbeams ; Microstructure ; Pressure measurement ; Pressure sensors ; Resonance ; Resonant frequency ; resonant pressure sensors ; Sensitivity ; Sensors ; Temperature dependence ; Tracking ; veering phenomenon ; Vibration mode ; Vibrations</subject><ispartof>IEEE sensors journal, 2024-08, Vol.24 (15), p.23520-23526</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-ad52db19febd97bba2cf42e3f0b2601ead7c2752767f85ae9da176f871506ba63</cites><orcidid>0000-0003-4289-6354 ; 0000-0002-9491-1838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10562254$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10562254$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alcheikh, Nouha</creatorcontrib><creatorcontrib>Ben Mbarek, Sofiane</creatorcontrib><creatorcontrib>Younis, Mohammad I.</creatorcontrib><title>An Ultrasensitive Low-to-Medium Vacuum Pressure Sensor Using a Resonant Microstructure</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This article reports an ultrasensitive low-to-medium vacuum pressure sensor based on an electrothermally tuned and electrostatically actuated resonant microstructure. The concept is based on tracking the frequency difference shift of the first two modes of vibration of the microstructure, which modes experience the phenomenon of veering (frequency avoided crossing) while being cooled/heated by the varying air pressure. We demonstrate the idea based on a V-shaped multistepped microbeam and track the first two resonance frequencies of the symmetric and antisymmetric vibration modes. The microresonator is sandwiched between four electrodes to electrostatically actuate the first two modes of vibration. The sensitivity improvement is demonstrated experimentally for low-to-medium vacuum pressure ranging from 48 mtorr to 760 torr. Based on the new concept, the microsensor shows an ultrahigh sensitivity compared to the state of the art. More than 64 times sensitivity magnification is demonstrated compared to those operated based on tracking the frequency shift of the first or second vibration mode alone. At medium-vacuum pressure range, the microsensor achieves the highest sensitivity of 385 320 ppm/torr with a low power consumption of around <inline-formula> <tex-math notation="LaTeX">0.7 \mu </tex-math></inline-formula>W. Moreover, we simulated the temperature dependence of the resonance frequency difference for a temperature range from 30 °C to 55 °C. The results show a minimal effect of this temperature variation. The proposed method is simple in principle and design, which makes the microsensor promising for high-performance resonate-based pressure sensor devices.</description><subject>Frequency measurement</subject><subject>Frequency shift</subject><subject>High sensitivity</subject><subject>low power</subject><subject>Microbeams</subject><subject>Microstructure</subject><subject>Pressure measurement</subject><subject>Pressure sensors</subject><subject>Resonance</subject><subject>Resonant frequency</subject><subject>resonant pressure sensors</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Temperature dependence</subject><subject>Tracking</subject><subject>veering phenomenon</subject><subject>Vibration mode</subject><subject>Vibrations</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAUgsLLFO8dixnSwrVF5qAVFasbOcZIJSlaTYDoi_x1FZsLqzOHdmdAg5BzYBYPnVw3L2OOGMpxORMgVKHJARSJkloNPscJgFS1Kh347JifcbxiDXUo_IetrS1TY467H1TWi-kM677yR0yQKrpv-ga1v2MZ4det87pMvIdY6ufNO-U0tf0HetbQNdNKXrfHB9GSJ2So5qu_V49pdjsrqZvV7fJfOn2_vr6TwpQauQ2EryqoC8xqLKdVFYXtYpR1GzgisGaCtdci25VrrOpMW8srFXZxokU4VVYkwu93t3rvvs0Qez6XrXxpNGsEylUQZApGBPDS96h7XZuebDuh8DzAz6zKDPDPrMn77Yudh3GkT8x0vFuUzFL4AzbPQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Alcheikh, Nouha</creator><creator>Ben Mbarek, Sofiane</creator><creator>Younis, Mohammad I.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4289-6354</orcidid><orcidid>https://orcid.org/0000-0002-9491-1838</orcidid></search><sort><creationdate>20240801</creationdate><title>An Ultrasensitive Low-to-Medium Vacuum Pressure Sensor Using a Resonant Microstructure</title><author>Alcheikh, Nouha ; Ben Mbarek, Sofiane ; Younis, Mohammad I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-ad52db19febd97bba2cf42e3f0b2601ead7c2752767f85ae9da176f871506ba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Frequency measurement</topic><topic>Frequency shift</topic><topic>High sensitivity</topic><topic>low power</topic><topic>Microbeams</topic><topic>Microstructure</topic><topic>Pressure measurement</topic><topic>Pressure sensors</topic><topic>Resonance</topic><topic>Resonant frequency</topic><topic>resonant pressure sensors</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Temperature dependence</topic><topic>Tracking</topic><topic>veering phenomenon</topic><topic>Vibration mode</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alcheikh, Nouha</creatorcontrib><creatorcontrib>Ben Mbarek, Sofiane</creatorcontrib><creatorcontrib>Younis, Mohammad I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alcheikh, Nouha</au><au>Ben Mbarek, Sofiane</au><au>Younis, Mohammad I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Ultrasensitive Low-to-Medium Vacuum Pressure Sensor Using a Resonant Microstructure</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>24</volume><issue>15</issue><spage>23520</spage><epage>23526</epage><pages>23520-23526</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This article reports an ultrasensitive low-to-medium vacuum pressure sensor based on an electrothermally tuned and electrostatically actuated resonant microstructure. The concept is based on tracking the frequency difference shift of the first two modes of vibration of the microstructure, which modes experience the phenomenon of veering (frequency avoided crossing) while being cooled/heated by the varying air pressure. We demonstrate the idea based on a V-shaped multistepped microbeam and track the first two resonance frequencies of the symmetric and antisymmetric vibration modes. The microresonator is sandwiched between four electrodes to electrostatically actuate the first two modes of vibration. The sensitivity improvement is demonstrated experimentally for low-to-medium vacuum pressure ranging from 48 mtorr to 760 torr. Based on the new concept, the microsensor shows an ultrahigh sensitivity compared to the state of the art. More than 64 times sensitivity magnification is demonstrated compared to those operated based on tracking the frequency shift of the first or second vibration mode alone. At medium-vacuum pressure range, the microsensor achieves the highest sensitivity of 385 320 ppm/torr with a low power consumption of around <inline-formula> <tex-math notation="LaTeX">0.7 \mu </tex-math></inline-formula>W. Moreover, we simulated the temperature dependence of the resonance frequency difference for a temperature range from 30 °C to 55 °C. The results show a minimal effect of this temperature variation. The proposed method is simple in principle and design, which makes the microsensor promising for high-performance resonate-based pressure sensor devices.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3406163</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4289-6354</orcidid><orcidid>https://orcid.org/0000-0002-9491-1838</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-08, Vol.24 (15), p.23520-23526 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2024_3406163 |
source | IEEE Electronic Library (IEL) |
subjects | Frequency measurement Frequency shift High sensitivity low power Microbeams Microstructure Pressure measurement Pressure sensors Resonance Resonant frequency resonant pressure sensors Sensitivity Sensors Temperature dependence Tracking veering phenomenon Vibration mode Vibrations |
title | An Ultrasensitive Low-to-Medium Vacuum Pressure Sensor Using a Resonant Microstructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Ultrasensitive%20Low-to-Medium%20Vacuum%20Pressure%20Sensor%20Using%20a%20Resonant%20Microstructure&rft.jtitle=IEEE%20sensors%20journal&rft.au=Alcheikh,%20Nouha&rft.date=2024-08-01&rft.volume=24&rft.issue=15&rft.spage=23520&rft.epage=23526&rft.pages=23520-23526&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3406163&rft_dat=%3Cproquest_RIE%3E3086434011%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086434011&rft_id=info:pmid/&rft_ieee_id=10562254&rfr_iscdi=true |