An Ultrasensitive Low-to-Medium Vacuum Pressure Sensor Using a Resonant Microstructure

This article reports an ultrasensitive low-to-medium vacuum pressure sensor based on an electrothermally tuned and electrostatically actuated resonant microstructure. The concept is based on tracking the frequency difference shift of the first two modes of vibration of the microstructure, which mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-08, Vol.24 (15), p.23520-23526
Hauptverfasser: Alcheikh, Nouha, Ben Mbarek, Sofiane, Younis, Mohammad I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23526
container_issue 15
container_start_page 23520
container_title IEEE sensors journal
container_volume 24
creator Alcheikh, Nouha
Ben Mbarek, Sofiane
Younis, Mohammad I.
description This article reports an ultrasensitive low-to-medium vacuum pressure sensor based on an electrothermally tuned and electrostatically actuated resonant microstructure. The concept is based on tracking the frequency difference shift of the first two modes of vibration of the microstructure, which modes experience the phenomenon of veering (frequency avoided crossing) while being cooled/heated by the varying air pressure. We demonstrate the idea based on a V-shaped multistepped microbeam and track the first two resonance frequencies of the symmetric and antisymmetric vibration modes. The microresonator is sandwiched between four electrodes to electrostatically actuate the first two modes of vibration. The sensitivity improvement is demonstrated experimentally for low-to-medium vacuum pressure ranging from 48 mtorr to 760 torr. Based on the new concept, the microsensor shows an ultrahigh sensitivity compared to the state of the art. More than 64 times sensitivity magnification is demonstrated compared to those operated based on tracking the frequency shift of the first or second vibration mode alone. At medium-vacuum pressure range, the microsensor achieves the highest sensitivity of 385 320 ppm/torr with a low power consumption of around 0.7 \mu W. Moreover, we simulated the temperature dependence of the resonance frequency difference for a temperature range from 30 °C to 55 °C. The results show a minimal effect of this temperature variation. The proposed method is simple in principle and design, which makes the microsensor promising for high-performance resonate-based pressure sensor devices.
doi_str_mv 10.1109/JSEN.2024.3406163
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2024_3406163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10562254</ieee_id><sourcerecordid>3086434011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-ad52db19febd97bba2cf42e3f0b2601ead7c2752767f85ae9da176f871506ba63</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgsLLFO8dixnSwrVF5qAVFasbOcZIJSlaTYDoi_x1FZsLqzOHdmdAg5BzYBYPnVw3L2OOGMpxORMgVKHJARSJkloNPscJgFS1Kh347JifcbxiDXUo_IetrS1TY467H1TWi-kM677yR0yQKrpv-ga1v2MZ4det87pMvIdY6ufNO-U0tf0HetbQNdNKXrfHB9GSJ2So5qu_V49pdjsrqZvV7fJfOn2_vr6TwpQauQ2EryqoC8xqLKdVFYXtYpR1GzgisGaCtdci25VrrOpMW8srFXZxokU4VVYkwu93t3rvvs0Qez6XrXxpNGsEylUQZApGBPDS96h7XZuebDuh8DzAz6zKDPDPrMn77Yudh3GkT8x0vFuUzFL4AzbPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086434011</pqid></control><display><type>article</type><title>An Ultrasensitive Low-to-Medium Vacuum Pressure Sensor Using a Resonant Microstructure</title><source>IEEE Electronic Library (IEL)</source><creator>Alcheikh, Nouha ; Ben Mbarek, Sofiane ; Younis, Mohammad I.</creator><creatorcontrib>Alcheikh, Nouha ; Ben Mbarek, Sofiane ; Younis, Mohammad I.</creatorcontrib><description>This article reports an ultrasensitive low-to-medium vacuum pressure sensor based on an electrothermally tuned and electrostatically actuated resonant microstructure. The concept is based on tracking the frequency difference shift of the first two modes of vibration of the microstructure, which modes experience the phenomenon of veering (frequency avoided crossing) while being cooled/heated by the varying air pressure. We demonstrate the idea based on a V-shaped multistepped microbeam and track the first two resonance frequencies of the symmetric and antisymmetric vibration modes. The microresonator is sandwiched between four electrodes to electrostatically actuate the first two modes of vibration. The sensitivity improvement is demonstrated experimentally for low-to-medium vacuum pressure ranging from 48 mtorr to 760 torr. Based on the new concept, the microsensor shows an ultrahigh sensitivity compared to the state of the art. More than 64 times sensitivity magnification is demonstrated compared to those operated based on tracking the frequency shift of the first or second vibration mode alone. At medium-vacuum pressure range, the microsensor achieves the highest sensitivity of 385 320 ppm/torr with a low power consumption of around &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;0.7 \mu &lt;/tex-math&gt;&lt;/inline-formula&gt;W. Moreover, we simulated the temperature dependence of the resonance frequency difference for a temperature range from 30 °C to 55 °C. The results show a minimal effect of this temperature variation. The proposed method is simple in principle and design, which makes the microsensor promising for high-performance resonate-based pressure sensor devices.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3406163</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Frequency measurement ; Frequency shift ; High sensitivity ; low power ; Microbeams ; Microstructure ; Pressure measurement ; Pressure sensors ; Resonance ; Resonant frequency ; resonant pressure sensors ; Sensitivity ; Sensors ; Temperature dependence ; Tracking ; veering phenomenon ; Vibration mode ; Vibrations</subject><ispartof>IEEE sensors journal, 2024-08, Vol.24 (15), p.23520-23526</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-ad52db19febd97bba2cf42e3f0b2601ead7c2752767f85ae9da176f871506ba63</cites><orcidid>0000-0003-4289-6354 ; 0000-0002-9491-1838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10562254$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10562254$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alcheikh, Nouha</creatorcontrib><creatorcontrib>Ben Mbarek, Sofiane</creatorcontrib><creatorcontrib>Younis, Mohammad I.</creatorcontrib><title>An Ultrasensitive Low-to-Medium Vacuum Pressure Sensor Using a Resonant Microstructure</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This article reports an ultrasensitive low-to-medium vacuum pressure sensor based on an electrothermally tuned and electrostatically actuated resonant microstructure. The concept is based on tracking the frequency difference shift of the first two modes of vibration of the microstructure, which modes experience the phenomenon of veering (frequency avoided crossing) while being cooled/heated by the varying air pressure. We demonstrate the idea based on a V-shaped multistepped microbeam and track the first two resonance frequencies of the symmetric and antisymmetric vibration modes. The microresonator is sandwiched between four electrodes to electrostatically actuate the first two modes of vibration. The sensitivity improvement is demonstrated experimentally for low-to-medium vacuum pressure ranging from 48 mtorr to 760 torr. Based on the new concept, the microsensor shows an ultrahigh sensitivity compared to the state of the art. More than 64 times sensitivity magnification is demonstrated compared to those operated based on tracking the frequency shift of the first or second vibration mode alone. At medium-vacuum pressure range, the microsensor achieves the highest sensitivity of 385 320 ppm/torr with a low power consumption of around &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;0.7 \mu &lt;/tex-math&gt;&lt;/inline-formula&gt;W. Moreover, we simulated the temperature dependence of the resonance frequency difference for a temperature range from 30 °C to 55 °C. The results show a minimal effect of this temperature variation. The proposed method is simple in principle and design, which makes the microsensor promising for high-performance resonate-based pressure sensor devices.</description><subject>Frequency measurement</subject><subject>Frequency shift</subject><subject>High sensitivity</subject><subject>low power</subject><subject>Microbeams</subject><subject>Microstructure</subject><subject>Pressure measurement</subject><subject>Pressure sensors</subject><subject>Resonance</subject><subject>Resonant frequency</subject><subject>resonant pressure sensors</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Temperature dependence</subject><subject>Tracking</subject><subject>veering phenomenon</subject><subject>Vibration mode</subject><subject>Vibrations</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAUgsLLFO8dixnSwrVF5qAVFasbOcZIJSlaTYDoi_x1FZsLqzOHdmdAg5BzYBYPnVw3L2OOGMpxORMgVKHJARSJkloNPscJgFS1Kh347JifcbxiDXUo_IetrS1TY467H1TWi-kM677yR0yQKrpv-ga1v2MZ4det87pMvIdY6ufNO-U0tf0HetbQNdNKXrfHB9GSJ2So5qu_V49pdjsrqZvV7fJfOn2_vr6TwpQauQ2EryqoC8xqLKdVFYXtYpR1GzgisGaCtdci25VrrOpMW8srFXZxokU4VVYkwu93t3rvvs0Qez6XrXxpNGsEylUQZApGBPDS96h7XZuebDuh8DzAz6zKDPDPrMn77Yudh3GkT8x0vFuUzFL4AzbPQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Alcheikh, Nouha</creator><creator>Ben Mbarek, Sofiane</creator><creator>Younis, Mohammad I.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4289-6354</orcidid><orcidid>https://orcid.org/0000-0002-9491-1838</orcidid></search><sort><creationdate>20240801</creationdate><title>An Ultrasensitive Low-to-Medium Vacuum Pressure Sensor Using a Resonant Microstructure</title><author>Alcheikh, Nouha ; Ben Mbarek, Sofiane ; Younis, Mohammad I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-ad52db19febd97bba2cf42e3f0b2601ead7c2752767f85ae9da176f871506ba63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Frequency measurement</topic><topic>Frequency shift</topic><topic>High sensitivity</topic><topic>low power</topic><topic>Microbeams</topic><topic>Microstructure</topic><topic>Pressure measurement</topic><topic>Pressure sensors</topic><topic>Resonance</topic><topic>Resonant frequency</topic><topic>resonant pressure sensors</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Temperature dependence</topic><topic>Tracking</topic><topic>veering phenomenon</topic><topic>Vibration mode</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alcheikh, Nouha</creatorcontrib><creatorcontrib>Ben Mbarek, Sofiane</creatorcontrib><creatorcontrib>Younis, Mohammad I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alcheikh, Nouha</au><au>Ben Mbarek, Sofiane</au><au>Younis, Mohammad I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Ultrasensitive Low-to-Medium Vacuum Pressure Sensor Using a Resonant Microstructure</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>24</volume><issue>15</issue><spage>23520</spage><epage>23526</epage><pages>23520-23526</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This article reports an ultrasensitive low-to-medium vacuum pressure sensor based on an electrothermally tuned and electrostatically actuated resonant microstructure. The concept is based on tracking the frequency difference shift of the first two modes of vibration of the microstructure, which modes experience the phenomenon of veering (frequency avoided crossing) while being cooled/heated by the varying air pressure. We demonstrate the idea based on a V-shaped multistepped microbeam and track the first two resonance frequencies of the symmetric and antisymmetric vibration modes. The microresonator is sandwiched between four electrodes to electrostatically actuate the first two modes of vibration. The sensitivity improvement is demonstrated experimentally for low-to-medium vacuum pressure ranging from 48 mtorr to 760 torr. Based on the new concept, the microsensor shows an ultrahigh sensitivity compared to the state of the art. More than 64 times sensitivity magnification is demonstrated compared to those operated based on tracking the frequency shift of the first or second vibration mode alone. At medium-vacuum pressure range, the microsensor achieves the highest sensitivity of 385 320 ppm/torr with a low power consumption of around &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;0.7 \mu &lt;/tex-math&gt;&lt;/inline-formula&gt;W. Moreover, we simulated the temperature dependence of the resonance frequency difference for a temperature range from 30 °C to 55 °C. The results show a minimal effect of this temperature variation. The proposed method is simple in principle and design, which makes the microsensor promising for high-performance resonate-based pressure sensor devices.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3406163</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4289-6354</orcidid><orcidid>https://orcid.org/0000-0002-9491-1838</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-08, Vol.24 (15), p.23520-23526
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2024_3406163
source IEEE Electronic Library (IEL)
subjects Frequency measurement
Frequency shift
High sensitivity
low power
Microbeams
Microstructure
Pressure measurement
Pressure sensors
Resonance
Resonant frequency
resonant pressure sensors
Sensitivity
Sensors
Temperature dependence
Tracking
veering phenomenon
Vibration mode
Vibrations
title An Ultrasensitive Low-to-Medium Vacuum Pressure Sensor Using a Resonant Microstructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Ultrasensitive%20Low-to-Medium%20Vacuum%20Pressure%20Sensor%20Using%20a%20Resonant%20Microstructure&rft.jtitle=IEEE%20sensors%20journal&rft.au=Alcheikh,%20Nouha&rft.date=2024-08-01&rft.volume=24&rft.issue=15&rft.spage=23520&rft.epage=23526&rft.pages=23520-23526&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3406163&rft_dat=%3Cproquest_RIE%3E3086434011%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086434011&rft_id=info:pmid/&rft_ieee_id=10562254&rfr_iscdi=true