GreenScan: Toward Large-Scale Terrestrial Monitoring the Health of Urban Trees Using Mobile Sensing

Healthy urban greenery is a fundamental asset to mitigate climate change phenomena such as extreme heat and air pollution. However, urban trees are often affected by abiotic and biotic stressors that hamper their functionality, and whenever not timely managed, even their survival. While the current...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-07, Vol.24 (13), p.21286-21299
Hauptverfasser: Gupta, Akshit, Mora, Simone, Zhang, Fan, Rutten, Martine, Venkatesha Prasad, R., Ratti, Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21299
container_issue 13
container_start_page 21286
container_title IEEE sensors journal
container_volume 24
creator Gupta, Akshit
Mora, Simone
Zhang, Fan
Rutten, Martine
Venkatesha Prasad, R.
Ratti, Carlo
description Healthy urban greenery is a fundamental asset to mitigate climate change phenomena such as extreme heat and air pollution. However, urban trees are often affected by abiotic and biotic stressors that hamper their functionality, and whenever not timely managed, even their survival. While the current greenery inspection techniques can help in taking effective measures, they often require a high amount of human labor, making frequent assessments infeasible at city-wide scales. In this article, we present GreenScan, a ground-based sensing system designed to provide health assessments of urban trees at high spatio-temporal resolutions, with low costs. The system uses thermal and multispectral imaging sensors fused using a custom computer vision model to estimate two tree health indexes. The evaluation of the system was performed through data collection experiments in Cambridge, USA. Overall, this work illustrates a novel approach for autonomous mobile ground-based tree health monitoring on city-wide scales at high temporal resolutions with low costs.
doi_str_mv 10.1109/JSEN.2024.3397490
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2024_3397490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10529969</ieee_id><sourcerecordid>3073299156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-dff53bd96f0076d97c421f0ee7e20845b6bdfd680d2dcca55ee0b31473bf519b3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhSMEEqXwA5AYLDGn2HEcx2yoghbUwtBUYrPs-NymCnGxUyH-PY7agenufO-9s74kuSV4QggWD2-r5_dJhrN8QqngucBnyYgwVqaE5-X50FOc5pR_XiZXIewwJoIzPkrqmQfoVrXqHlHlfpQ3aKH8BtL41AKqwHsIvW9Ui5aua3rnm26D-i2gOai23yJn0dpr1aEqBgW0DsN-6XQT3SvohvE6ubCqDXBzquNk_fJcTefp4mP2On1apHVGRJ8aaxnVRhQWY14Ywes8IxYDcMhwmTNdaGNNUWKTmbpWjAFgTUnOqbaMCE3Hyf0xd-_d9yF-W-7cwXfxpKSY00wIwoqoIkdV7V0IHqzc--ZL-V9JsBxYyoGlHFjKE8vouTt6GgD4p2cxsxD0D_C8cMs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073299156</pqid></control><display><type>article</type><title>GreenScan: Toward Large-Scale Terrestrial Monitoring the Health of Urban Trees Using Mobile Sensing</title><source>IEEE/IET Electronic Library</source><creator>Gupta, Akshit ; Mora, Simone ; Zhang, Fan ; Rutten, Martine ; Venkatesha Prasad, R. ; Ratti, Carlo</creator><creatorcontrib>Gupta, Akshit ; Mora, Simone ; Zhang, Fan ; Rutten, Martine ; Venkatesha Prasad, R. ; Ratti, Carlo</creatorcontrib><description>Healthy urban greenery is a fundamental asset to mitigate climate change phenomena such as extreme heat and air pollution. However, urban trees are often affected by abiotic and biotic stressors that hamper their functionality, and whenever not timely managed, even their survival. While the current greenery inspection techniques can help in taking effective measures, they often require a high amount of human labor, making frequent assessments infeasible at city-wide scales. In this article, we present GreenScan, a ground-based sensing system designed to provide health assessments of urban trees at high spatio-temporal resolutions, with low costs. The system uses thermal and multispectral imaging sensors fused using a custom computer vision model to estimate two tree health indexes. The evaluation of the system was performed through data collection experiments in Cambridge, USA. Overall, this work illustrates a novel approach for autonomous mobile ground-based tree health monitoring on city-wide scales at high temporal resolutions with low costs.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3397490</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Assessments ; Climate change ; Computer vision ; Costs ; Drive-by sensing ; Green products ; greenery health ; Image sensors ; Imaging ; mobile sensing ; Plants (biology) ; Sensors ; Thermal imaging ; Urban areas ; Urban planning ; Vegetation</subject><ispartof>IEEE sensors journal, 2024-07, Vol.24 (13), p.21286-21299</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-dff53bd96f0076d97c421f0ee7e20845b6bdfd680d2dcca55ee0b31473bf519b3</cites><orcidid>0000-0001-7443-7641 ; 0000-0002-7991-1346 ; 0009-0003-4390-2012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10529969$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids></links><search><creatorcontrib>Gupta, Akshit</creatorcontrib><creatorcontrib>Mora, Simone</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Rutten, Martine</creatorcontrib><creatorcontrib>Venkatesha Prasad, R.</creatorcontrib><creatorcontrib>Ratti, Carlo</creatorcontrib><title>GreenScan: Toward Large-Scale Terrestrial Monitoring the Health of Urban Trees Using Mobile Sensing</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Healthy urban greenery is a fundamental asset to mitigate climate change phenomena such as extreme heat and air pollution. However, urban trees are often affected by abiotic and biotic stressors that hamper their functionality, and whenever not timely managed, even their survival. While the current greenery inspection techniques can help in taking effective measures, they often require a high amount of human labor, making frequent assessments infeasible at city-wide scales. In this article, we present GreenScan, a ground-based sensing system designed to provide health assessments of urban trees at high spatio-temporal resolutions, with low costs. The system uses thermal and multispectral imaging sensors fused using a custom computer vision model to estimate two tree health indexes. The evaluation of the system was performed through data collection experiments in Cambridge, USA. Overall, this work illustrates a novel approach for autonomous mobile ground-based tree health monitoring on city-wide scales at high temporal resolutions with low costs.</description><subject>Assessments</subject><subject>Climate change</subject><subject>Computer vision</subject><subject>Costs</subject><subject>Drive-by sensing</subject><subject>Green products</subject><subject>greenery health</subject><subject>Image sensors</subject><subject>Imaging</subject><subject>mobile sensing</subject><subject>Plants (biology)</subject><subject>Sensors</subject><subject>Thermal imaging</subject><subject>Urban areas</subject><subject>Urban planning</subject><subject>Vegetation</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQhSMEEqXwA5AYLDGn2HEcx2yoghbUwtBUYrPs-NymCnGxUyH-PY7agenufO-9s74kuSV4QggWD2-r5_dJhrN8QqngucBnyYgwVqaE5-X50FOc5pR_XiZXIewwJoIzPkrqmQfoVrXqHlHlfpQ3aKH8BtL41AKqwHsIvW9Ui5aua3rnm26D-i2gOai23yJn0dpr1aEqBgW0DsN-6XQT3SvohvE6ubCqDXBzquNk_fJcTefp4mP2On1apHVGRJ8aaxnVRhQWY14Ywes8IxYDcMhwmTNdaGNNUWKTmbpWjAFgTUnOqbaMCE3Hyf0xd-_d9yF-W-7cwXfxpKSY00wIwoqoIkdV7V0IHqzc--ZL-V9JsBxYyoGlHFjKE8vouTt6GgD4p2cxsxD0D_C8cMs</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Gupta, Akshit</creator><creator>Mora, Simone</creator><creator>Zhang, Fan</creator><creator>Rutten, Martine</creator><creator>Venkatesha Prasad, R.</creator><creator>Ratti, Carlo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7443-7641</orcidid><orcidid>https://orcid.org/0000-0002-7991-1346</orcidid><orcidid>https://orcid.org/0009-0003-4390-2012</orcidid></search><sort><creationdate>20240701</creationdate><title>GreenScan: Toward Large-Scale Terrestrial Monitoring the Health of Urban Trees Using Mobile Sensing</title><author>Gupta, Akshit ; Mora, Simone ; Zhang, Fan ; Rutten, Martine ; Venkatesha Prasad, R. ; Ratti, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-dff53bd96f0076d97c421f0ee7e20845b6bdfd680d2dcca55ee0b31473bf519b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Assessments</topic><topic>Climate change</topic><topic>Computer vision</topic><topic>Costs</topic><topic>Drive-by sensing</topic><topic>Green products</topic><topic>greenery health</topic><topic>Image sensors</topic><topic>Imaging</topic><topic>mobile sensing</topic><topic>Plants (biology)</topic><topic>Sensors</topic><topic>Thermal imaging</topic><topic>Urban areas</topic><topic>Urban planning</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Akshit</creatorcontrib><creatorcontrib>Mora, Simone</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Rutten, Martine</creatorcontrib><creatorcontrib>Venkatesha Prasad, R.</creatorcontrib><creatorcontrib>Ratti, Carlo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Akshit</au><au>Mora, Simone</au><au>Zhang, Fan</au><au>Rutten, Martine</au><au>Venkatesha Prasad, R.</au><au>Ratti, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GreenScan: Toward Large-Scale Terrestrial Monitoring the Health of Urban Trees Using Mobile Sensing</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>24</volume><issue>13</issue><spage>21286</spage><epage>21299</epage><pages>21286-21299</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Healthy urban greenery is a fundamental asset to mitigate climate change phenomena such as extreme heat and air pollution. However, urban trees are often affected by abiotic and biotic stressors that hamper their functionality, and whenever not timely managed, even their survival. While the current greenery inspection techniques can help in taking effective measures, they often require a high amount of human labor, making frequent assessments infeasible at city-wide scales. In this article, we present GreenScan, a ground-based sensing system designed to provide health assessments of urban trees at high spatio-temporal resolutions, with low costs. The system uses thermal and multispectral imaging sensors fused using a custom computer vision model to estimate two tree health indexes. The evaluation of the system was performed through data collection experiments in Cambridge, USA. Overall, this work illustrates a novel approach for autonomous mobile ground-based tree health monitoring on city-wide scales at high temporal resolutions with low costs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3397490</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7443-7641</orcidid><orcidid>https://orcid.org/0000-0002-7991-1346</orcidid><orcidid>https://orcid.org/0009-0003-4390-2012</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-07, Vol.24 (13), p.21286-21299
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2024_3397490
source IEEE/IET Electronic Library
subjects Assessments
Climate change
Computer vision
Costs
Drive-by sensing
Green products
greenery health
Image sensors
Imaging
mobile sensing
Plants (biology)
Sensors
Thermal imaging
Urban areas
Urban planning
Vegetation
title GreenScan: Toward Large-Scale Terrestrial Monitoring the Health of Urban Trees Using Mobile Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GreenScan:%20Toward%20Large-Scale%20Terrestrial%20Monitoring%20the%20Health%20of%20Urban%20Trees%20Using%20Mobile%20Sensing&rft.jtitle=IEEE%20sensors%20journal&rft.au=Gupta,%20Akshit&rft.date=2024-07-01&rft.volume=24&rft.issue=13&rft.spage=21286&rft.epage=21299&rft.pages=21286-21299&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3397490&rft_dat=%3Cproquest_cross%3E3073299156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073299156&rft_id=info:pmid/&rft_ieee_id=10529969&rfr_iscdi=true