GreenScan: Toward Large-Scale Terrestrial Monitoring the Health of Urban Trees Using Mobile Sensing
Healthy urban greenery is a fundamental asset to mitigate climate change phenomena such as extreme heat and air pollution. However, urban trees are often affected by abiotic and biotic stressors that hamper their functionality, and whenever not timely managed, even their survival. While the current...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2024-07, Vol.24 (13), p.21286-21299 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21299 |
---|---|
container_issue | 13 |
container_start_page | 21286 |
container_title | IEEE sensors journal |
container_volume | 24 |
creator | Gupta, Akshit Mora, Simone Zhang, Fan Rutten, Martine Venkatesha Prasad, R. Ratti, Carlo |
description | Healthy urban greenery is a fundamental asset to mitigate climate change phenomena such as extreme heat and air pollution. However, urban trees are often affected by abiotic and biotic stressors that hamper their functionality, and whenever not timely managed, even their survival. While the current greenery inspection techniques can help in taking effective measures, they often require a high amount of human labor, making frequent assessments infeasible at city-wide scales. In this article, we present GreenScan, a ground-based sensing system designed to provide health assessments of urban trees at high spatio-temporal resolutions, with low costs. The system uses thermal and multispectral imaging sensors fused using a custom computer vision model to estimate two tree health indexes. The evaluation of the system was performed through data collection experiments in Cambridge, USA. Overall, this work illustrates a novel approach for autonomous mobile ground-based tree health monitoring on city-wide scales at high temporal resolutions with low costs. |
doi_str_mv | 10.1109/JSEN.2024.3397490 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2024_3397490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10529969</ieee_id><sourcerecordid>3073299156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-dff53bd96f0076d97c421f0ee7e20845b6bdfd680d2dcca55ee0b31473bf519b3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhSMEEqXwA5AYLDGn2HEcx2yoghbUwtBUYrPs-NymCnGxUyH-PY7agenufO-9s74kuSV4QggWD2-r5_dJhrN8QqngucBnyYgwVqaE5-X50FOc5pR_XiZXIewwJoIzPkrqmQfoVrXqHlHlfpQ3aKH8BtL41AKqwHsIvW9Ui5aua3rnm26D-i2gOai23yJn0dpr1aEqBgW0DsN-6XQT3SvohvE6ubCqDXBzquNk_fJcTefp4mP2On1apHVGRJ8aaxnVRhQWY14Ywes8IxYDcMhwmTNdaGNNUWKTmbpWjAFgTUnOqbaMCE3Hyf0xd-_d9yF-W-7cwXfxpKSY00wIwoqoIkdV7V0IHqzc--ZL-V9JsBxYyoGlHFjKE8vouTt6GgD4p2cxsxD0D_C8cMs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073299156</pqid></control><display><type>article</type><title>GreenScan: Toward Large-Scale Terrestrial Monitoring the Health of Urban Trees Using Mobile Sensing</title><source>IEEE/IET Electronic Library</source><creator>Gupta, Akshit ; Mora, Simone ; Zhang, Fan ; Rutten, Martine ; Venkatesha Prasad, R. ; Ratti, Carlo</creator><creatorcontrib>Gupta, Akshit ; Mora, Simone ; Zhang, Fan ; Rutten, Martine ; Venkatesha Prasad, R. ; Ratti, Carlo</creatorcontrib><description>Healthy urban greenery is a fundamental asset to mitigate climate change phenomena such as extreme heat and air pollution. However, urban trees are often affected by abiotic and biotic stressors that hamper their functionality, and whenever not timely managed, even their survival. While the current greenery inspection techniques can help in taking effective measures, they often require a high amount of human labor, making frequent assessments infeasible at city-wide scales. In this article, we present GreenScan, a ground-based sensing system designed to provide health assessments of urban trees at high spatio-temporal resolutions, with low costs. The system uses thermal and multispectral imaging sensors fused using a custom computer vision model to estimate two tree health indexes. The evaluation of the system was performed through data collection experiments in Cambridge, USA. Overall, this work illustrates a novel approach for autonomous mobile ground-based tree health monitoring on city-wide scales at high temporal resolutions with low costs.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3397490</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Assessments ; Climate change ; Computer vision ; Costs ; Drive-by sensing ; Green products ; greenery health ; Image sensors ; Imaging ; mobile sensing ; Plants (biology) ; Sensors ; Thermal imaging ; Urban areas ; Urban planning ; Vegetation</subject><ispartof>IEEE sensors journal, 2024-07, Vol.24 (13), p.21286-21299</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-dff53bd96f0076d97c421f0ee7e20845b6bdfd680d2dcca55ee0b31473bf519b3</cites><orcidid>0000-0001-7443-7641 ; 0000-0002-7991-1346 ; 0009-0003-4390-2012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10529969$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids></links><search><creatorcontrib>Gupta, Akshit</creatorcontrib><creatorcontrib>Mora, Simone</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Rutten, Martine</creatorcontrib><creatorcontrib>Venkatesha Prasad, R.</creatorcontrib><creatorcontrib>Ratti, Carlo</creatorcontrib><title>GreenScan: Toward Large-Scale Terrestrial Monitoring the Health of Urban Trees Using Mobile Sensing</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Healthy urban greenery is a fundamental asset to mitigate climate change phenomena such as extreme heat and air pollution. However, urban trees are often affected by abiotic and biotic stressors that hamper their functionality, and whenever not timely managed, even their survival. While the current greenery inspection techniques can help in taking effective measures, they often require a high amount of human labor, making frequent assessments infeasible at city-wide scales. In this article, we present GreenScan, a ground-based sensing system designed to provide health assessments of urban trees at high spatio-temporal resolutions, with low costs. The system uses thermal and multispectral imaging sensors fused using a custom computer vision model to estimate two tree health indexes. The evaluation of the system was performed through data collection experiments in Cambridge, USA. Overall, this work illustrates a novel approach for autonomous mobile ground-based tree health monitoring on city-wide scales at high temporal resolutions with low costs.</description><subject>Assessments</subject><subject>Climate change</subject><subject>Computer vision</subject><subject>Costs</subject><subject>Drive-by sensing</subject><subject>Green products</subject><subject>greenery health</subject><subject>Image sensors</subject><subject>Imaging</subject><subject>mobile sensing</subject><subject>Plants (biology)</subject><subject>Sensors</subject><subject>Thermal imaging</subject><subject>Urban areas</subject><subject>Urban planning</subject><subject>Vegetation</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQhSMEEqXwA5AYLDGn2HEcx2yoghbUwtBUYrPs-NymCnGxUyH-PY7agenufO-9s74kuSV4QggWD2-r5_dJhrN8QqngucBnyYgwVqaE5-X50FOc5pR_XiZXIewwJoIzPkrqmQfoVrXqHlHlfpQ3aKH8BtL41AKqwHsIvW9Ui5aua3rnm26D-i2gOai23yJn0dpr1aEqBgW0DsN-6XQT3SvohvE6ubCqDXBzquNk_fJcTefp4mP2On1apHVGRJ8aaxnVRhQWY14Ywes8IxYDcMhwmTNdaGNNUWKTmbpWjAFgTUnOqbaMCE3Hyf0xd-_d9yF-W-7cwXfxpKSY00wIwoqoIkdV7V0IHqzc--ZL-V9JsBxYyoGlHFjKE8vouTt6GgD4p2cxsxD0D_C8cMs</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Gupta, Akshit</creator><creator>Mora, Simone</creator><creator>Zhang, Fan</creator><creator>Rutten, Martine</creator><creator>Venkatesha Prasad, R.</creator><creator>Ratti, Carlo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7443-7641</orcidid><orcidid>https://orcid.org/0000-0002-7991-1346</orcidid><orcidid>https://orcid.org/0009-0003-4390-2012</orcidid></search><sort><creationdate>20240701</creationdate><title>GreenScan: Toward Large-Scale Terrestrial Monitoring the Health of Urban Trees Using Mobile Sensing</title><author>Gupta, Akshit ; Mora, Simone ; Zhang, Fan ; Rutten, Martine ; Venkatesha Prasad, R. ; Ratti, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-dff53bd96f0076d97c421f0ee7e20845b6bdfd680d2dcca55ee0b31473bf519b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Assessments</topic><topic>Climate change</topic><topic>Computer vision</topic><topic>Costs</topic><topic>Drive-by sensing</topic><topic>Green products</topic><topic>greenery health</topic><topic>Image sensors</topic><topic>Imaging</topic><topic>mobile sensing</topic><topic>Plants (biology)</topic><topic>Sensors</topic><topic>Thermal imaging</topic><topic>Urban areas</topic><topic>Urban planning</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Akshit</creatorcontrib><creatorcontrib>Mora, Simone</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Rutten, Martine</creatorcontrib><creatorcontrib>Venkatesha Prasad, R.</creatorcontrib><creatorcontrib>Ratti, Carlo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Akshit</au><au>Mora, Simone</au><au>Zhang, Fan</au><au>Rutten, Martine</au><au>Venkatesha Prasad, R.</au><au>Ratti, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GreenScan: Toward Large-Scale Terrestrial Monitoring the Health of Urban Trees Using Mobile Sensing</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>24</volume><issue>13</issue><spage>21286</spage><epage>21299</epage><pages>21286-21299</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Healthy urban greenery is a fundamental asset to mitigate climate change phenomena such as extreme heat and air pollution. However, urban trees are often affected by abiotic and biotic stressors that hamper their functionality, and whenever not timely managed, even their survival. While the current greenery inspection techniques can help in taking effective measures, they often require a high amount of human labor, making frequent assessments infeasible at city-wide scales. In this article, we present GreenScan, a ground-based sensing system designed to provide health assessments of urban trees at high spatio-temporal resolutions, with low costs. The system uses thermal and multispectral imaging sensors fused using a custom computer vision model to estimate two tree health indexes. The evaluation of the system was performed through data collection experiments in Cambridge, USA. Overall, this work illustrates a novel approach for autonomous mobile ground-based tree health monitoring on city-wide scales at high temporal resolutions with low costs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3397490</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7443-7641</orcidid><orcidid>https://orcid.org/0000-0002-7991-1346</orcidid><orcidid>https://orcid.org/0009-0003-4390-2012</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2024-07, Vol.24 (13), p.21286-21299 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2024_3397490 |
source | IEEE/IET Electronic Library |
subjects | Assessments Climate change Computer vision Costs Drive-by sensing Green products greenery health Image sensors Imaging mobile sensing Plants (biology) Sensors Thermal imaging Urban areas Urban planning Vegetation |
title | GreenScan: Toward Large-Scale Terrestrial Monitoring the Health of Urban Trees Using Mobile Sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T17%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GreenScan:%20Toward%20Large-Scale%20Terrestrial%20Monitoring%20the%20Health%20of%20Urban%20Trees%20Using%20Mobile%20Sensing&rft.jtitle=IEEE%20sensors%20journal&rft.au=Gupta,%20Akshit&rft.date=2024-07-01&rft.volume=24&rft.issue=13&rft.spage=21286&rft.epage=21299&rft.pages=21286-21299&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3397490&rft_dat=%3Cproquest_cross%3E3073299156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3073299156&rft_id=info:pmid/&rft_ieee_id=10529969&rfr_iscdi=true |