Electroacoustic Modeling of Patterned Piezoelectric Micromachined Ultrasonic Transducers

Patterning the piezoelectric layer of a piezoelectric micromachined ultrasonic transducer (PMUT) plate usually leads to improved performance; however, modeling of such PMUT is not as straightforward as its conventional counterpart. This article presents an electroacoustic model for conventional as w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-06, Vol.24 (12), p.18859-18871
Hauptverfasser: Mansoori, Amirfereydoon, Salmani, Hamed, Hanke, Ulrik, Hoff, Lars, Halvorsen, Einar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18871
container_issue 12
container_start_page 18859
container_title IEEE sensors journal
container_volume 24
creator Mansoori, Amirfereydoon
Salmani, Hamed
Hanke, Ulrik
Hoff, Lars
Halvorsen, Einar
description Patterning the piezoelectric layer of a piezoelectric micromachined ultrasonic transducer (PMUT) plate usually leads to improved performance; however, modeling of such PMUT is not as straightforward as its conventional counterpart. This article presents an electroacoustic model for conventional as well as patterned PMUTs with square shaped membranes. Hamilton's principle is utilized to formulate the dynamics of the patterned PMUT. The derived mode shape is used to obtain the electrical, mechanical, and acoustic parameters to arrive at the complete electroacoustic model. The model is applied to eight different designs, where four are of conventional type with different electrode configurations and the other four are patterned designs with different patterning configurations. Using the proposed model, the electrode and patterning geometry for each PMUT design is optimized. Natural frequency, mode shape, the input impedance at the electrical port, and the transfer function from the electrical to the acoustic port calculated from this model are shown to be in good agreement with those obtained from finite-element analysis for all the studied designs. Moreover, the patterned PMUTs are shown to have superior performance, in terms of volume velocity per unit voltage, over conventional PMUTs operating at a given resonance frequency.
doi_str_mv 10.1109/JSEN.2024.3391655
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2024_3391655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10508633</ieee_id><sourcerecordid>3068175471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-9f110eec11c15dcd1581a314a0b800240880517183a18d4ced04eba8c95b86dd3</originalsourceid><addsrcrecordid>eNpNkEFPwzAMhSMEEmPwA5A4VOLcES9Jmx7RNAZowCQ2abcoS1zo1DUjSQ_w62nZDpxsyd-znx8h10BHALS4e36fvo7GdMxHjBWQCXFCBiCETCHn8rTvGU05y9fn5CKELaVQ5CIfkPW0RhO908a1IVYmeXEW66r5SFyZLHSM6Bu0yaLCH4d_aM9UxrudNp9VP1vV0evgmm6w9LoJtjXowyU5K3Ud8OpYh2T1MF1OHtP52-xpcj9PzZhnMS3Kzj6iATAgrLEgJGgGXNONpN07VEoqIAfJNEjLDVrKcaOlKcRGZtayIbk97N1799ViiGrrWt90JxWjmYRc8Bw6Cg5UZzwEj6Xa-2qn_bcCqvoAVR-g6gNUxwA7zc1BUyHiP15QmTHGfgGuLW2L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068175471</pqid></control><display><type>article</type><title>Electroacoustic Modeling of Patterned Piezoelectric Micromachined Ultrasonic Transducers</title><source>IEEE Electronic Library (IEL)</source><creator>Mansoori, Amirfereydoon ; Salmani, Hamed ; Hanke, Ulrik ; Hoff, Lars ; Halvorsen, Einar</creator><creatorcontrib>Mansoori, Amirfereydoon ; Salmani, Hamed ; Hanke, Ulrik ; Hoff, Lars ; Halvorsen, Einar</creatorcontrib><description>Patterning the piezoelectric layer of a piezoelectric micromachined ultrasonic transducer (PMUT) plate usually leads to improved performance; however, modeling of such PMUT is not as straightforward as its conventional counterpart. This article presents an electroacoustic model for conventional as well as patterned PMUTs with square shaped membranes. Hamilton's principle is utilized to formulate the dynamics of the patterned PMUT. The derived mode shape is used to obtain the electrical, mechanical, and acoustic parameters to arrive at the complete electroacoustic model. The model is applied to eight different designs, where four are of conventional type with different electrode configurations and the other four are patterned designs with different patterning configurations. Using the proposed model, the electrode and patterning geometry for each PMUT design is optimized. Natural frequency, mode shape, the input impedance at the electrical port, and the transfer function from the electrical to the acoustic port calculated from this model are shown to be in good agreement with those obtained from finite-element analysis for all the studied designs. Moreover, the patterned PMUTs are shown to have superior performance, in terms of volume velocity per unit voltage, over conventional PMUTs operating at a given resonance frequency.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3391655</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustic properties ; Acoustics ; Configurations ; Electroacoustic modeling ; Electrodes ; Enthalpy ; Finite element method ; Geometry ; Hamilton's principle ; Input impedance ; Mathematical models ; MEMS ; Micromachining ; Modelling ; patterned ; piezoelectric micromachined ultrasonic transducers (PMUTs) ; Piezoelectricity ; Resonant frequencies ; Sensors ; Shape ; transducer modeling ; Transducers ; Transfer functions</subject><ispartof>IEEE sensors journal, 2024-06, Vol.24 (12), p.18859-18871</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-9f110eec11c15dcd1581a314a0b800240880517183a18d4ced04eba8c95b86dd3</cites><orcidid>0000-0002-2185-2937 ; 0000-0001-6511-9190 ; 0000-0001-9470-767X ; 0000-0002-5726-0327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10508633$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10508633$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mansoori, Amirfereydoon</creatorcontrib><creatorcontrib>Salmani, Hamed</creatorcontrib><creatorcontrib>Hanke, Ulrik</creatorcontrib><creatorcontrib>Hoff, Lars</creatorcontrib><creatorcontrib>Halvorsen, Einar</creatorcontrib><title>Electroacoustic Modeling of Patterned Piezoelectric Micromachined Ultrasonic Transducers</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Patterning the piezoelectric layer of a piezoelectric micromachined ultrasonic transducer (PMUT) plate usually leads to improved performance; however, modeling of such PMUT is not as straightforward as its conventional counterpart. This article presents an electroacoustic model for conventional as well as patterned PMUTs with square shaped membranes. Hamilton's principle is utilized to formulate the dynamics of the patterned PMUT. The derived mode shape is used to obtain the electrical, mechanical, and acoustic parameters to arrive at the complete electroacoustic model. The model is applied to eight different designs, where four are of conventional type with different electrode configurations and the other four are patterned designs with different patterning configurations. Using the proposed model, the electrode and patterning geometry for each PMUT design is optimized. Natural frequency, mode shape, the input impedance at the electrical port, and the transfer function from the electrical to the acoustic port calculated from this model are shown to be in good agreement with those obtained from finite-element analysis for all the studied designs. Moreover, the patterned PMUTs are shown to have superior performance, in terms of volume velocity per unit voltage, over conventional PMUTs operating at a given resonance frequency.</description><subject>Acoustic properties</subject><subject>Acoustics</subject><subject>Configurations</subject><subject>Electroacoustic modeling</subject><subject>Electrodes</subject><subject>Enthalpy</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Hamilton's principle</subject><subject>Input impedance</subject><subject>Mathematical models</subject><subject>MEMS</subject><subject>Micromachining</subject><subject>Modelling</subject><subject>patterned</subject><subject>piezoelectric micromachined ultrasonic transducers (PMUTs)</subject><subject>Piezoelectricity</subject><subject>Resonant frequencies</subject><subject>Sensors</subject><subject>Shape</subject><subject>transducer modeling</subject><subject>Transducers</subject><subject>Transfer functions</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFPwzAMhSMEEmPwA5A4VOLcES9Jmx7RNAZowCQ2abcoS1zo1DUjSQ_w62nZDpxsyd-znx8h10BHALS4e36fvo7GdMxHjBWQCXFCBiCETCHn8rTvGU05y9fn5CKELaVQ5CIfkPW0RhO908a1IVYmeXEW66r5SFyZLHSM6Bu0yaLCH4d_aM9UxrudNp9VP1vV0evgmm6w9LoJtjXowyU5K3Ud8OpYh2T1MF1OHtP52-xpcj9PzZhnMS3Kzj6iATAgrLEgJGgGXNONpN07VEoqIAfJNEjLDVrKcaOlKcRGZtayIbk97N1799ViiGrrWt90JxWjmYRc8Bw6Cg5UZzwEj6Xa-2qn_bcCqvoAVR-g6gNUxwA7zc1BUyHiP15QmTHGfgGuLW2L</recordid><startdate>20240615</startdate><enddate>20240615</enddate><creator>Mansoori, Amirfereydoon</creator><creator>Salmani, Hamed</creator><creator>Hanke, Ulrik</creator><creator>Hoff, Lars</creator><creator>Halvorsen, Einar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2185-2937</orcidid><orcidid>https://orcid.org/0000-0001-6511-9190</orcidid><orcidid>https://orcid.org/0000-0001-9470-767X</orcidid><orcidid>https://orcid.org/0000-0002-5726-0327</orcidid></search><sort><creationdate>20240615</creationdate><title>Electroacoustic Modeling of Patterned Piezoelectric Micromachined Ultrasonic Transducers</title><author>Mansoori, Amirfereydoon ; Salmani, Hamed ; Hanke, Ulrik ; Hoff, Lars ; Halvorsen, Einar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-9f110eec11c15dcd1581a314a0b800240880517183a18d4ced04eba8c95b86dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic properties</topic><topic>Acoustics</topic><topic>Configurations</topic><topic>Electroacoustic modeling</topic><topic>Electrodes</topic><topic>Enthalpy</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Hamilton's principle</topic><topic>Input impedance</topic><topic>Mathematical models</topic><topic>MEMS</topic><topic>Micromachining</topic><topic>Modelling</topic><topic>patterned</topic><topic>piezoelectric micromachined ultrasonic transducers (PMUTs)</topic><topic>Piezoelectricity</topic><topic>Resonant frequencies</topic><topic>Sensors</topic><topic>Shape</topic><topic>transducer modeling</topic><topic>Transducers</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mansoori, Amirfereydoon</creatorcontrib><creatorcontrib>Salmani, Hamed</creatorcontrib><creatorcontrib>Hanke, Ulrik</creatorcontrib><creatorcontrib>Hoff, Lars</creatorcontrib><creatorcontrib>Halvorsen, Einar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mansoori, Amirfereydoon</au><au>Salmani, Hamed</au><au>Hanke, Ulrik</au><au>Hoff, Lars</au><au>Halvorsen, Einar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroacoustic Modeling of Patterned Piezoelectric Micromachined Ultrasonic Transducers</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-06-15</date><risdate>2024</risdate><volume>24</volume><issue>12</issue><spage>18859</spage><epage>18871</epage><pages>18859-18871</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Patterning the piezoelectric layer of a piezoelectric micromachined ultrasonic transducer (PMUT) plate usually leads to improved performance; however, modeling of such PMUT is not as straightforward as its conventional counterpart. This article presents an electroacoustic model for conventional as well as patterned PMUTs with square shaped membranes. Hamilton's principle is utilized to formulate the dynamics of the patterned PMUT. The derived mode shape is used to obtain the electrical, mechanical, and acoustic parameters to arrive at the complete electroacoustic model. The model is applied to eight different designs, where four are of conventional type with different electrode configurations and the other four are patterned designs with different patterning configurations. Using the proposed model, the electrode and patterning geometry for each PMUT design is optimized. Natural frequency, mode shape, the input impedance at the electrical port, and the transfer function from the electrical to the acoustic port calculated from this model are shown to be in good agreement with those obtained from finite-element analysis for all the studied designs. Moreover, the patterned PMUTs are shown to have superior performance, in terms of volume velocity per unit voltage, over conventional PMUTs operating at a given resonance frequency.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3391655</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2185-2937</orcidid><orcidid>https://orcid.org/0000-0001-6511-9190</orcidid><orcidid>https://orcid.org/0000-0001-9470-767X</orcidid><orcidid>https://orcid.org/0000-0002-5726-0327</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-06, Vol.24 (12), p.18859-18871
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2024_3391655
source IEEE Electronic Library (IEL)
subjects Acoustic properties
Acoustics
Configurations
Electroacoustic modeling
Electrodes
Enthalpy
Finite element method
Geometry
Hamilton's principle
Input impedance
Mathematical models
MEMS
Micromachining
Modelling
patterned
piezoelectric micromachined ultrasonic transducers (PMUTs)
Piezoelectricity
Resonant frequencies
Sensors
Shape
transducer modeling
Transducers
Transfer functions
title Electroacoustic Modeling of Patterned Piezoelectric Micromachined Ultrasonic Transducers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T09%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroacoustic%20Modeling%20of%20Patterned%20Piezoelectric%20Micromachined%20Ultrasonic%20Transducers&rft.jtitle=IEEE%20sensors%20journal&rft.au=Mansoori,%20Amirfereydoon&rft.date=2024-06-15&rft.volume=24&rft.issue=12&rft.spage=18859&rft.epage=18871&rft.pages=18859-18871&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3391655&rft_dat=%3Cproquest_RIE%3E3068175471%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068175471&rft_id=info:pmid/&rft_ieee_id=10508633&rfr_iscdi=true