Occlusion Is Underrated: An Occlusion- Attention Strategy Assembled in 3-D Object Detectors

LiDAR sensors provide rich geometrical information for 3-D scene understanding, which has been widely used as a unique input for 3-D object detection. However, due to the intrinsic property, point clouds scanned by LiDAR are always sparse and incomplete, and objects are occluded to different extents...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2024-05, Vol.24 (10), p.16502-16509
Hauptverfasser: He, Yufei, Wu, Yan, Mo, Yujian, Hu, Yinghao, Zhang, Yuwei, Wang, Jijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16509
container_issue 10
container_start_page 16502
container_title IEEE sensors journal
container_volume 24
creator He, Yufei
Wu, Yan
Mo, Yujian
Hu, Yinghao
Zhang, Yuwei
Wang, Jijun
description LiDAR sensors provide rich geometrical information for 3-D scene understanding, which has been widely used as a unique input for 3-D object detection. However, due to the intrinsic property, point clouds scanned by LiDAR are always sparse and incomplete, and objects are occluded to different extents, which will deteriorate the detection accuracy. The existing methods overlook occlusion or tackle occlusion implicitly. In this article, we emphasize the universality of occlusion in point clouds and propose a novel occlusion-attention strategy, which aims to increase model's sensitivity to occlusion and maintain great performance in occlude scenes. The proposed method simulates different types and levels of occlusion and explores the relationship between the uncertainty caused by occlusion and the prediction distribution. The major changes include the following: 1) data augmentation specifically for occlusion scenes to force feature extractor into learning efficient features regardless of damage and 2) uncertainty estimation module to model prediction as a distribution instead of the deterministic label. We incorporate the proposed methods into various classical 3-D base detectors and demonstrate performance gain in the KITTI dataset, which proves the particularity of occlusion structure and the necessity of uncertainty estimation.
doi_str_mv 10.1109/JSEN.2024.3384401
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2024_3384401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10494704</ieee_id><sourcerecordid>3055169322</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-1bb4db59c6ff5a9f42f535057443af37c6fc82c56deef3e620583e041562a49a3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfszmw1toq1aKPdSC4GFJNrOS0iZ1d3vov29Ci3iaYeZ5Z-Ah5J6zEecse3pfTj9GggkYSZkCMH5BBlypNOIJpJd9L1kEMvm6JjferxnjWaKSAfleGLPZ-7pt6MzTVVOhc0XA6pnmDf3bRTQPAZvQY8vQAz8HmnuP23KDFa0bKqMJXZRrNIFOMHSldf6WXNli4_HuXIdk9TL9HL9F88XrbJzPIyMgDhEvS6hKlZnYWlVkFoRVUjGVAMjCyqSbm1QYFVeIVmIsmEolMuAqFgVkhRySx9PdnWt_9-iDXrd713QvtWRK8TiTQnQUP1HGtd47tHrn6m3hDpoz3TvUvUPdO9Rnh13m4ZSpEfEfDxkkDOQRFdhsnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055169322</pqid></control><display><type>article</type><title>Occlusion Is Underrated: An Occlusion- Attention Strategy Assembled in 3-D Object Detectors</title><source>IEEE Electronic Library (IEL)</source><creator>He, Yufei ; Wu, Yan ; Mo, Yujian ; Hu, Yinghao ; Zhang, Yuwei ; Wang, Jijun</creator><creatorcontrib>He, Yufei ; Wu, Yan ; Mo, Yujian ; Hu, Yinghao ; Zhang, Yuwei ; Wang, Jijun</creatorcontrib><description>LiDAR sensors provide rich geometrical information for 3-D scene understanding, which has been widely used as a unique input for 3-D object detection. However, due to the intrinsic property, point clouds scanned by LiDAR are always sparse and incomplete, and objects are occluded to different extents, which will deteriorate the detection accuracy. The existing methods overlook occlusion or tackle occlusion implicitly. In this article, we emphasize the universality of occlusion in point clouds and propose a novel occlusion-attention strategy, which aims to increase model's sensitivity to occlusion and maintain great performance in occlude scenes. The proposed method simulates different types and levels of occlusion and explores the relationship between the uncertainty caused by occlusion and the prediction distribution. The major changes include the following: 1) data augmentation specifically for occlusion scenes to force feature extractor into learning efficient features regardless of damage and 2) uncertainty estimation module to model prediction as a distribution instead of the deterministic label. We incorporate the proposed methods into various classical 3-D base detectors and demonstrate performance gain in the KITTI dataset, which proves the particularity of occlusion structure and the necessity of uncertainty estimation.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3384401</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D object detection ; Data augmentation ; Detectors ; Feature extraction ; Lidar ; Object recognition ; occluded scenes ; Occlusion ; Point cloud compression ; Scene analysis ; Task analysis ; Three dimensional models ; Three-dimensional displays ; Uncertainty ; uncertainty estimation</subject><ispartof>IEEE sensors journal, 2024-05, Vol.24 (10), p.16502-16509</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-1bb4db59c6ff5a9f42f535057443af37c6fc82c56deef3e620583e041562a49a3</cites><orcidid>0000-0002-8874-8886 ; 0000-0002-0327-8396 ; 0000-0001-9820-2708 ; 0009-0004-8497-2030 ; 0000-0002-1370-2912 ; 0009-0000-7628-2073</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10494704$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10494704$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Yufei</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Mo, Yujian</creatorcontrib><creatorcontrib>Hu, Yinghao</creatorcontrib><creatorcontrib>Zhang, Yuwei</creatorcontrib><creatorcontrib>Wang, Jijun</creatorcontrib><title>Occlusion Is Underrated: An Occlusion- Attention Strategy Assembled in 3-D Object Detectors</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>LiDAR sensors provide rich geometrical information for 3-D scene understanding, which has been widely used as a unique input for 3-D object detection. However, due to the intrinsic property, point clouds scanned by LiDAR are always sparse and incomplete, and objects are occluded to different extents, which will deteriorate the detection accuracy. The existing methods overlook occlusion or tackle occlusion implicitly. In this article, we emphasize the universality of occlusion in point clouds and propose a novel occlusion-attention strategy, which aims to increase model's sensitivity to occlusion and maintain great performance in occlude scenes. The proposed method simulates different types and levels of occlusion and explores the relationship between the uncertainty caused by occlusion and the prediction distribution. The major changes include the following: 1) data augmentation specifically for occlusion scenes to force feature extractor into learning efficient features regardless of damage and 2) uncertainty estimation module to model prediction as a distribution instead of the deterministic label. We incorporate the proposed methods into various classical 3-D base detectors and demonstrate performance gain in the KITTI dataset, which proves the particularity of occlusion structure and the necessity of uncertainty estimation.</description><subject>3-D object detection</subject><subject>Data augmentation</subject><subject>Detectors</subject><subject>Feature extraction</subject><subject>Lidar</subject><subject>Object recognition</subject><subject>occluded scenes</subject><subject>Occlusion</subject><subject>Point cloud compression</subject><subject>Scene analysis</subject><subject>Task analysis</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Uncertainty</subject><subject>uncertainty estimation</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfszmw1toq1aKPdSC4GFJNrOS0iZ1d3vov29Ci3iaYeZ5Z-Ah5J6zEecse3pfTj9GggkYSZkCMH5BBlypNOIJpJd9L1kEMvm6JjferxnjWaKSAfleGLPZ-7pt6MzTVVOhc0XA6pnmDf3bRTQPAZvQY8vQAz8HmnuP23KDFa0bKqMJXZRrNIFOMHSldf6WXNli4_HuXIdk9TL9HL9F88XrbJzPIyMgDhEvS6hKlZnYWlVkFoRVUjGVAMjCyqSbm1QYFVeIVmIsmEolMuAqFgVkhRySx9PdnWt_9-iDXrd713QvtWRK8TiTQnQUP1HGtd47tHrn6m3hDpoz3TvUvUPdO9Rnh13m4ZSpEfEfDxkkDOQRFdhsnw</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>He, Yufei</creator><creator>Wu, Yan</creator><creator>Mo, Yujian</creator><creator>Hu, Yinghao</creator><creator>Zhang, Yuwei</creator><creator>Wang, Jijun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8874-8886</orcidid><orcidid>https://orcid.org/0000-0002-0327-8396</orcidid><orcidid>https://orcid.org/0000-0001-9820-2708</orcidid><orcidid>https://orcid.org/0009-0004-8497-2030</orcidid><orcidid>https://orcid.org/0000-0002-1370-2912</orcidid><orcidid>https://orcid.org/0009-0000-7628-2073</orcidid></search><sort><creationdate>20240515</creationdate><title>Occlusion Is Underrated: An Occlusion- Attention Strategy Assembled in 3-D Object Detectors</title><author>He, Yufei ; Wu, Yan ; Mo, Yujian ; Hu, Yinghao ; Zhang, Yuwei ; Wang, Jijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-1bb4db59c6ff5a9f42f535057443af37c6fc82c56deef3e620583e041562a49a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D object detection</topic><topic>Data augmentation</topic><topic>Detectors</topic><topic>Feature extraction</topic><topic>Lidar</topic><topic>Object recognition</topic><topic>occluded scenes</topic><topic>Occlusion</topic><topic>Point cloud compression</topic><topic>Scene analysis</topic><topic>Task analysis</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Uncertainty</topic><topic>uncertainty estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yufei</creatorcontrib><creatorcontrib>Wu, Yan</creatorcontrib><creatorcontrib>Mo, Yujian</creatorcontrib><creatorcontrib>Hu, Yinghao</creatorcontrib><creatorcontrib>Zhang, Yuwei</creatorcontrib><creatorcontrib>Wang, Jijun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Yufei</au><au>Wu, Yan</au><au>Mo, Yujian</au><au>Hu, Yinghao</au><au>Zhang, Yuwei</au><au>Wang, Jijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Occlusion Is Underrated: An Occlusion- Attention Strategy Assembled in 3-D Object Detectors</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2024-05-15</date><risdate>2024</risdate><volume>24</volume><issue>10</issue><spage>16502</spage><epage>16509</epage><pages>16502-16509</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>LiDAR sensors provide rich geometrical information for 3-D scene understanding, which has been widely used as a unique input for 3-D object detection. However, due to the intrinsic property, point clouds scanned by LiDAR are always sparse and incomplete, and objects are occluded to different extents, which will deteriorate the detection accuracy. The existing methods overlook occlusion or tackle occlusion implicitly. In this article, we emphasize the universality of occlusion in point clouds and propose a novel occlusion-attention strategy, which aims to increase model's sensitivity to occlusion and maintain great performance in occlude scenes. The proposed method simulates different types and levels of occlusion and explores the relationship between the uncertainty caused by occlusion and the prediction distribution. The major changes include the following: 1) data augmentation specifically for occlusion scenes to force feature extractor into learning efficient features regardless of damage and 2) uncertainty estimation module to model prediction as a distribution instead of the deterministic label. We incorporate the proposed methods into various classical 3-D base detectors and demonstrate performance gain in the KITTI dataset, which proves the particularity of occlusion structure and the necessity of uncertainty estimation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3384401</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8874-8886</orcidid><orcidid>https://orcid.org/0000-0002-0327-8396</orcidid><orcidid>https://orcid.org/0000-0001-9820-2708</orcidid><orcidid>https://orcid.org/0009-0004-8497-2030</orcidid><orcidid>https://orcid.org/0000-0002-1370-2912</orcidid><orcidid>https://orcid.org/0009-0000-7628-2073</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2024-05, Vol.24 (10), p.16502-16509
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2024_3384401
source IEEE Electronic Library (IEL)
subjects 3-D object detection
Data augmentation
Detectors
Feature extraction
Lidar
Object recognition
occluded scenes
Occlusion
Point cloud compression
Scene analysis
Task analysis
Three dimensional models
Three-dimensional displays
Uncertainty
uncertainty estimation
title Occlusion Is Underrated: An Occlusion- Attention Strategy Assembled in 3-D Object Detectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Occlusion%20Is%20Underrated:%20An%20Occlusion-%20Attention%20Strategy%20Assembled%20in%203-D%20Object%20Detectors&rft.jtitle=IEEE%20sensors%20journal&rft.au=He,%20Yufei&rft.date=2024-05-15&rft.volume=24&rft.issue=10&rft.spage=16502&rft.epage=16509&rft.pages=16502-16509&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3384401&rft_dat=%3Cproquest_RIE%3E3055169322%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055169322&rft_id=info:pmid/&rft_ieee_id=10494704&rfr_iscdi=true