BICANet: LiDAR Point Cloud Classification Network Based on Coordinate Attention and Blueprint Separation Involution Neural Network
With the advent of the era of Industry 4.0 and the continuous development of point cloud data acquisition technology, point cloud data have been widely used in the unmanned distribution of intelligent logistics. Applying deep neural networks to accurate light detection and ranging (LiDAR) point clou...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2023-11, Vol.23 (22), p.27720-27732 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27732 |
---|---|
container_issue | 22 |
container_start_page | 27720 |
container_title | IEEE sensors journal |
container_volume | 23 |
creator | Zhang, Guodao Ye, Haiyang Gao, Xiaoyun Liu, Ruyu Tao, Xiuting Yang, Genfu Zhou, Jian Chen, Zhao-Min |
description | With the advent of the era of Industry 4.0 and the continuous development of point cloud data acquisition technology, point cloud data have been widely used in the unmanned distribution of intelligent logistics. Applying deep neural networks to accurate light detection and ranging (LiDAR) point cloud classification results is considerably significant for unmanned transport. This article designs a 3-D point cloud classification model coordinate attention blueprint separation involution neural network (BICANet) with multidimensional feature extraction. First, to extract more point cloud features, 3-D point clouds are projected to a 2-D plane for calculating point cloud feature values, and multidimensional point cloud feature information is fused from different views. Second, the involution network is introduced to reduce the amount of redundant data for neural network computation and improve the whole network computation efficiency. At the same time, to further enhance the network feature learning capability, the blueprint separation convolution is combined with coordinate attention (CA). Finally, to draw our conclusions more rigorously, we conducted error analysis experiments and experimented with the generalization ability of our proposed BICANet model. The overall accuracy of BICANet in the Vaihingen and GML_B datasets was experimentally demonstrated to reach 86.0% and 98.8%, respectively. It is highly competitive with the currently available methods. |
doi_str_mv | 10.1109/JSEN.2023.3323047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2023_3323047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10286375</ieee_id><sourcerecordid>2890106596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-d62fd0b57b866e10812db87dab960abdfc2b0b15ccb7b9ca72c5c8c26a22722c3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhosoOKc_QPAi4HVnPtqm9W6rUydjilPwLuSr0FmbmaSKt_5yUzvBm3MO4Xnfk_NG0SmCE4RgcXG3nq8mGGIyIQQTmNC9aITSNI8RTfL9fiYwTgh9OYyOnNtAiAqa0lH0PVuU05X2l2BZX00fwYOpWw_KxnQqVO5cXdWS-9q0IFCfxr6CGXdagfBQGmNV3XKvwdR73f5SvFVg1nR6a3ujtd5yO8gX7Ydpup1TZ3nzZ3gcHVS8cfpk18fR8_X8qbyNl_c34XPLWOIi8bHKcKWgSKnIs0wjmCOsRE4VF0UGuVCVxAIKlEopqCgkp1imMpc44xhTjCUZR-eD79aa9047zzams21YyXBeQASztMgChQZKWuOc1RULl7xx-8UQZH3UrI-a9VGzXdRBczZoaq31Px7nGaEp-QFoH3xd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890106596</pqid></control><display><type>article</type><title>BICANet: LiDAR Point Cloud Classification Network Based on Coordinate Attention and Blueprint Separation Involution Neural Network</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Guodao ; Ye, Haiyang ; Gao, Xiaoyun ; Liu, Ruyu ; Tao, Xiuting ; Yang, Genfu ; Zhou, Jian ; Chen, Zhao-Min</creator><creatorcontrib>Zhang, Guodao ; Ye, Haiyang ; Gao, Xiaoyun ; Liu, Ruyu ; Tao, Xiuting ; Yang, Genfu ; Zhou, Jian ; Chen, Zhao-Min</creatorcontrib><description>With the advent of the era of Industry 4.0 and the continuous development of point cloud data acquisition technology, point cloud data have been widely used in the unmanned distribution of intelligent logistics. Applying deep neural networks to accurate light detection and ranging (LiDAR) point cloud classification results is considerably significant for unmanned transport. This article designs a 3-D point cloud classification model coordinate attention blueprint separation involution neural network (BICANet) with multidimensional feature extraction. First, to extract more point cloud features, 3-D point clouds are projected to a 2-D plane for calculating point cloud feature values, and multidimensional point cloud feature information is fused from different views. Second, the involution network is introduced to reduce the amount of redundant data for neural network computation and improve the whole network computation efficiency. At the same time, to further enhance the network feature learning capability, the blueprint separation convolution is combined with coordinate attention (CA). Finally, to draw our conclusions more rigorously, we conducted error analysis experiments and experimented with the generalization ability of our proposed BICANet model. The overall accuracy of BICANet in the Vaihingen and GML_B datasets was experimentally demonstrated to reach 86.0% and 98.8%, respectively. It is highly competitive with the currently available methods.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3323047</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Classification ; Classification algorithms ; Cloud computing ; Convolution ; Coordinate attention blueprint separation involution neural network (BICANet) ; Data acquisition ; deep learning ; Error analysis ; Feature extraction ; Industry 4.0 ; Laser radar ; Lidar ; light detection and ranging (LiDAR) point cloud classification ; Machine learning ; Model accuracy ; multidimensional features ; Neural networks ; Point cloud compression ; Sensors ; Separation ; Three dimensional models ; Three-dimensional displays</subject><ispartof>IEEE sensors journal, 2023-11, Vol.23 (22), p.27720-27732</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-d62fd0b57b866e10812db87dab960abdfc2b0b15ccb7b9ca72c5c8c26a22722c3</citedby><cites>FETCH-LOGICAL-c294t-d62fd0b57b866e10812db87dab960abdfc2b0b15ccb7b9ca72c5c8c26a22722c3</cites><orcidid>0009-0004-7399-3952 ; 0009-0007-4006-6716 ; 0000-0001-8955-1789 ; 0009-0003-5003-513X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10286375$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10286375$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Guodao</creatorcontrib><creatorcontrib>Ye, Haiyang</creatorcontrib><creatorcontrib>Gao, Xiaoyun</creatorcontrib><creatorcontrib>Liu, Ruyu</creatorcontrib><creatorcontrib>Tao, Xiuting</creatorcontrib><creatorcontrib>Yang, Genfu</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Chen, Zhao-Min</creatorcontrib><title>BICANet: LiDAR Point Cloud Classification Network Based on Coordinate Attention and Blueprint Separation Involution Neural Network</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>With the advent of the era of Industry 4.0 and the continuous development of point cloud data acquisition technology, point cloud data have been widely used in the unmanned distribution of intelligent logistics. Applying deep neural networks to accurate light detection and ranging (LiDAR) point cloud classification results is considerably significant for unmanned transport. This article designs a 3-D point cloud classification model coordinate attention blueprint separation involution neural network (BICANet) with multidimensional feature extraction. First, to extract more point cloud features, 3-D point clouds are projected to a 2-D plane for calculating point cloud feature values, and multidimensional point cloud feature information is fused from different views. Second, the involution network is introduced to reduce the amount of redundant data for neural network computation and improve the whole network computation efficiency. At the same time, to further enhance the network feature learning capability, the blueprint separation convolution is combined with coordinate attention (CA). Finally, to draw our conclusions more rigorously, we conducted error analysis experiments and experimented with the generalization ability of our proposed BICANet model. The overall accuracy of BICANet in the Vaihingen and GML_B datasets was experimentally demonstrated to reach 86.0% and 98.8%, respectively. It is highly competitive with the currently available methods.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Cloud computing</subject><subject>Convolution</subject><subject>Coordinate attention blueprint separation involution neural network (BICANet)</subject><subject>Data acquisition</subject><subject>deep learning</subject><subject>Error analysis</subject><subject>Feature extraction</subject><subject>Industry 4.0</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>light detection and ranging (LiDAR) point cloud classification</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>multidimensional features</subject><subject>Neural networks</subject><subject>Point cloud compression</subject><subject>Sensors</subject><subject>Separation</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhosoOKc_QPAi4HVnPtqm9W6rUydjilPwLuSr0FmbmaSKt_5yUzvBm3MO4Xnfk_NG0SmCE4RgcXG3nq8mGGIyIQQTmNC9aITSNI8RTfL9fiYwTgh9OYyOnNtAiAqa0lH0PVuU05X2l2BZX00fwYOpWw_KxnQqVO5cXdWS-9q0IFCfxr6CGXdagfBQGmNV3XKvwdR73f5SvFVg1nR6a3ujtd5yO8gX7Ydpup1TZ3nzZ3gcHVS8cfpk18fR8_X8qbyNl_c34XPLWOIi8bHKcKWgSKnIs0wjmCOsRE4VF0UGuVCVxAIKlEopqCgkp1imMpc44xhTjCUZR-eD79aa9047zzams21YyXBeQASztMgChQZKWuOc1RULl7xx-8UQZH3UrI-a9VGzXdRBczZoaq31Px7nGaEp-QFoH3xd</recordid><startdate>20231115</startdate><enddate>20231115</enddate><creator>Zhang, Guodao</creator><creator>Ye, Haiyang</creator><creator>Gao, Xiaoyun</creator><creator>Liu, Ruyu</creator><creator>Tao, Xiuting</creator><creator>Yang, Genfu</creator><creator>Zhou, Jian</creator><creator>Chen, Zhao-Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0004-7399-3952</orcidid><orcidid>https://orcid.org/0009-0007-4006-6716</orcidid><orcidid>https://orcid.org/0000-0001-8955-1789</orcidid><orcidid>https://orcid.org/0009-0003-5003-513X</orcidid></search><sort><creationdate>20231115</creationdate><title>BICANet: LiDAR Point Cloud Classification Network Based on Coordinate Attention and Blueprint Separation Involution Neural Network</title><author>Zhang, Guodao ; Ye, Haiyang ; Gao, Xiaoyun ; Liu, Ruyu ; Tao, Xiuting ; Yang, Genfu ; Zhou, Jian ; Chen, Zhao-Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-d62fd0b57b866e10812db87dab960abdfc2b0b15ccb7b9ca72c5c8c26a22722c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Cloud computing</topic><topic>Convolution</topic><topic>Coordinate attention blueprint separation involution neural network (BICANet)</topic><topic>Data acquisition</topic><topic>deep learning</topic><topic>Error analysis</topic><topic>Feature extraction</topic><topic>Industry 4.0</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>light detection and ranging (LiDAR) point cloud classification</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>multidimensional features</topic><topic>Neural networks</topic><topic>Point cloud compression</topic><topic>Sensors</topic><topic>Separation</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guodao</creatorcontrib><creatorcontrib>Ye, Haiyang</creatorcontrib><creatorcontrib>Gao, Xiaoyun</creatorcontrib><creatorcontrib>Liu, Ruyu</creatorcontrib><creatorcontrib>Tao, Xiuting</creatorcontrib><creatorcontrib>Yang, Genfu</creatorcontrib><creatorcontrib>Zhou, Jian</creatorcontrib><creatorcontrib>Chen, Zhao-Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Guodao</au><au>Ye, Haiyang</au><au>Gao, Xiaoyun</au><au>Liu, Ruyu</au><au>Tao, Xiuting</au><au>Yang, Genfu</au><au>Zhou, Jian</au><au>Chen, Zhao-Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BICANet: LiDAR Point Cloud Classification Network Based on Coordinate Attention and Blueprint Separation Involution Neural Network</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-11-15</date><risdate>2023</risdate><volume>23</volume><issue>22</issue><spage>27720</spage><epage>27732</epage><pages>27720-27732</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>With the advent of the era of Industry 4.0 and the continuous development of point cloud data acquisition technology, point cloud data have been widely used in the unmanned distribution of intelligent logistics. Applying deep neural networks to accurate light detection and ranging (LiDAR) point cloud classification results is considerably significant for unmanned transport. This article designs a 3-D point cloud classification model coordinate attention blueprint separation involution neural network (BICANet) with multidimensional feature extraction. First, to extract more point cloud features, 3-D point clouds are projected to a 2-D plane for calculating point cloud feature values, and multidimensional point cloud feature information is fused from different views. Second, the involution network is introduced to reduce the amount of redundant data for neural network computation and improve the whole network computation efficiency. At the same time, to further enhance the network feature learning capability, the blueprint separation convolution is combined with coordinate attention (CA). Finally, to draw our conclusions more rigorously, we conducted error analysis experiments and experimented with the generalization ability of our proposed BICANet model. The overall accuracy of BICANet in the Vaihingen and GML_B datasets was experimentally demonstrated to reach 86.0% and 98.8%, respectively. It is highly competitive with the currently available methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3323047</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0004-7399-3952</orcidid><orcidid>https://orcid.org/0009-0007-4006-6716</orcidid><orcidid>https://orcid.org/0000-0001-8955-1789</orcidid><orcidid>https://orcid.org/0009-0003-5003-513X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2023-11, Vol.23 (22), p.27720-27732 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2023_3323047 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Classification Classification algorithms Cloud computing Convolution Coordinate attention blueprint separation involution neural network (BICANet) Data acquisition deep learning Error analysis Feature extraction Industry 4.0 Laser radar Lidar light detection and ranging (LiDAR) point cloud classification Machine learning Model accuracy multidimensional features Neural networks Point cloud compression Sensors Separation Three dimensional models Three-dimensional displays |
title | BICANet: LiDAR Point Cloud Classification Network Based on Coordinate Attention and Blueprint Separation Involution Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BICANet:%20LiDAR%20Point%20Cloud%20Classification%20Network%20Based%20on%20Coordinate%20Attention%20and%20Blueprint%20Separation%20Involution%20Neural%20Network&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhang,%20Guodao&rft.date=2023-11-15&rft.volume=23&rft.issue=22&rft.spage=27720&rft.epage=27732&rft.pages=27720-27732&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3323047&rft_dat=%3Cproquest_RIE%3E2890106596%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890106596&rft_id=info:pmid/&rft_ieee_id=10286375&rfr_iscdi=true |