Challenges in Implementing Pitch/Roll Rate Integrating Gyroscopes: A Case Study on a New Dynamically Balanced Dual-Mass Resonator
A case study on a new dynamically balanced dual-mass resonator, for implementation in pitch/roll rate integrating gyroscopes (RIGs), is reported in this article. Proper measures have been taken during structural design to minimize the mismatch of both the resonant frequencies and the {Q} -factors b...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2023-11, Vol.23 (22), p.27068-27075 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27075 |
---|---|
container_issue | 22 |
container_start_page | 27068 |
container_title | IEEE sensors journal |
container_volume | 23 |
creator | Wang, Shihe Chen, Jianlin Tsukamoto, Takashiro Langfelder, Giacomo Tanaka, Shuji |
description | A case study on a new dynamically balanced dual-mass resonator, for implementation in pitch/roll rate integrating gyroscopes (RIGs), is reported in this article. Proper measures have been taken during structural design to minimize the mismatch of both the resonant frequencies and the {Q} -factors between in-plane (IP) and out-of-plane (OOP) modes. To improve the {Q} -factor of OOP mode, which is generally significantly lower than that of IP mode, a dual-mass structure reduces the torque applied to the supporting substrate in the OOP mode. Thus, dominant loss mechanisms are thermoelastic dissipation (TED) and squeeze film damping (SFD). After optimizing design parameters, {Q} -factor machining can be achieved by tuning SFD by operation pressure. The designed microelectromechanical systems (MEMS) resonator was fabricated using two layers of Si substrate combined with Au-Au thermocompression bonding technology. The experimental characterization revealed that the mismatches of resonant frequencies and {Q} -factors were as small as 1.3% and 32%, respectively. |
doi_str_mv | 10.1109/JSEN.2023.3314897 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2023_3314897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10261445</ieee_id><sourcerecordid>2890106636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-a1478e8d8d26ebdfa54f2d14bd7e9e8b7a2da9c0e6eecdb5b37ea309cc0d1f73</originalsourceid><addsrcrecordid>eNpNkEFPwkAQhRujiYj-ABMPm3gu7Ha33dYbAiIG0QAHb810dwol7bZ2S0yP_nOLePA0k8x7b_I-x7lldMAYjYYv6-ly4FGPDzhnIozkmdNjvh-6TIrw_Lhz6gouPy6dK2v3lLJI-rLnfI93kOdotmhJZsi8qHIs0DSZ2ZL3rFG74arMc7KCBsncNLit4fc2a-vSqrJC-0BGZAwWybo56JaUhgBZ4heZtAaKTHXpLXmEHIxCTSYHyN1XsJas0JYGmrK-di5SyC3e_M2-s3mabsbP7uJtNh-PFq7yItG4wIQMMdSh9gJMdAq-SD3NRKIlRhgmEjwNkaIYICqd-AmXCJxGSlHNUsn7zv0ptqrLzwPaJt6Xh9p0H2MvjCijQcCDTsVOKtXVszWmcVVnBdRtzGh8BB0fQcdH0PEf6M5zd_JkiPhP7wVMCJ__APcvfEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890106636</pqid></control><display><type>article</type><title>Challenges in Implementing Pitch/Roll Rate Integrating Gyroscopes: A Case Study on a New Dynamically Balanced Dual-Mass Resonator</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Shihe ; Chen, Jianlin ; Tsukamoto, Takashiro ; Langfelder, Giacomo ; Tanaka, Shuji</creator><creatorcontrib>Wang, Shihe ; Chen, Jianlin ; Tsukamoto, Takashiro ; Langfelder, Giacomo ; Tanaka, Shuji</creatorcontrib><description><![CDATA[A case study on a new dynamically balanced dual-mass resonator, for implementation in pitch/roll rate integrating gyroscopes (RIGs), is reported in this article. Proper measures have been taken during structural design to minimize the mismatch of both the resonant frequencies and the <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factors between in-plane (IP) and out-of-plane (OOP) modes. To improve the <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factor of OOP mode, which is generally significantly lower than that of IP mode, a dual-mass structure reduces the torque applied to the supporting substrate in the OOP mode. Thus, dominant loss mechanisms are thermoelastic dissipation (TED) and squeeze film damping (SFD). After optimizing design parameters, <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factor machining can be achieved by tuning SFD by operation pressure. The designed microelectromechanical systems (MEMS) resonator was fabricated using two layers of Si substrate combined with Au-Au thermocompression bonding technology. The experimental characterization revealed that the mismatches of resonant frequencies and <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factors were as small as 1.3% and 32%, respectively.]]></description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3314897</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Case studies ; Damping ; Design optimization ; Design parameters ; Dynamically balanced ; Gyroscopes ; IP networks ; Machining ; Microelectromechanical systems ; out-of-plane (OOP) ; Pitch (inclination) ; Q-factor ; rate integrating gyroscope (RIG) ; Resonant frequencies ; Resonant frequency ; Resonators ; Rolling motion ; Sensors ; Silicon substrates ; Springs ; Squeeze films ; Structural design</subject><ispartof>IEEE sensors journal, 2023-11, Vol.23 (22), p.27068-27075</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-a1478e8d8d26ebdfa54f2d14bd7e9e8b7a2da9c0e6eecdb5b37ea309cc0d1f73</citedby><cites>FETCH-LOGICAL-c294t-a1478e8d8d26ebdfa54f2d14bd7e9e8b7a2da9c0e6eecdb5b37ea309cc0d1f73</cites><orcidid>0000-0002-2997-834X ; 0009-0004-6913-7619 ; 0000-0002-7614-7717 ; 0000-0002-2663-3266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10261445$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10261445$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Shihe</creatorcontrib><creatorcontrib>Chen, Jianlin</creatorcontrib><creatorcontrib>Tsukamoto, Takashiro</creatorcontrib><creatorcontrib>Langfelder, Giacomo</creatorcontrib><creatorcontrib>Tanaka, Shuji</creatorcontrib><title>Challenges in Implementing Pitch/Roll Rate Integrating Gyroscopes: A Case Study on a New Dynamically Balanced Dual-Mass Resonator</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description><![CDATA[A case study on a new dynamically balanced dual-mass resonator, for implementation in pitch/roll rate integrating gyroscopes (RIGs), is reported in this article. Proper measures have been taken during structural design to minimize the mismatch of both the resonant frequencies and the <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factors between in-plane (IP) and out-of-plane (OOP) modes. To improve the <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factor of OOP mode, which is generally significantly lower than that of IP mode, a dual-mass structure reduces the torque applied to the supporting substrate in the OOP mode. Thus, dominant loss mechanisms are thermoelastic dissipation (TED) and squeeze film damping (SFD). After optimizing design parameters, <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factor machining can be achieved by tuning SFD by operation pressure. The designed microelectromechanical systems (MEMS) resonator was fabricated using two layers of Si substrate combined with Au-Au thermocompression bonding technology. The experimental characterization revealed that the mismatches of resonant frequencies and <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factors were as small as 1.3% and 32%, respectively.]]></description><subject>Case studies</subject><subject>Damping</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Dynamically balanced</subject><subject>Gyroscopes</subject><subject>IP networks</subject><subject>Machining</subject><subject>Microelectromechanical systems</subject><subject>out-of-plane (OOP)</subject><subject>Pitch (inclination)</subject><subject>Q-factor</subject><subject>rate integrating gyroscope (RIG)</subject><subject>Resonant frequencies</subject><subject>Resonant frequency</subject><subject>Resonators</subject><subject>Rolling motion</subject><subject>Sensors</subject><subject>Silicon substrates</subject><subject>Springs</subject><subject>Squeeze films</subject><subject>Structural design</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFPwkAQhRujiYj-ABMPm3gu7Ha33dYbAiIG0QAHb810dwol7bZ2S0yP_nOLePA0k8x7b_I-x7lldMAYjYYv6-ly4FGPDzhnIozkmdNjvh-6TIrw_Lhz6gouPy6dK2v3lLJI-rLnfI93kOdotmhJZsi8qHIs0DSZ2ZL3rFG74arMc7KCBsncNLit4fc2a-vSqrJC-0BGZAwWybo56JaUhgBZ4heZtAaKTHXpLXmEHIxCTSYHyN1XsJas0JYGmrK-di5SyC3e_M2-s3mabsbP7uJtNh-PFq7yItG4wIQMMdSh9gJMdAq-SD3NRKIlRhgmEjwNkaIYICqd-AmXCJxGSlHNUsn7zv0ptqrLzwPaJt6Xh9p0H2MvjCijQcCDTsVOKtXVszWmcVVnBdRtzGh8BB0fQcdH0PEf6M5zd_JkiPhP7wVMCJ__APcvfEc</recordid><startdate>20231115</startdate><enddate>20231115</enddate><creator>Wang, Shihe</creator><creator>Chen, Jianlin</creator><creator>Tsukamoto, Takashiro</creator><creator>Langfelder, Giacomo</creator><creator>Tanaka, Shuji</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2997-834X</orcidid><orcidid>https://orcid.org/0009-0004-6913-7619</orcidid><orcidid>https://orcid.org/0000-0002-7614-7717</orcidid><orcidid>https://orcid.org/0000-0002-2663-3266</orcidid></search><sort><creationdate>20231115</creationdate><title>Challenges in Implementing Pitch/Roll Rate Integrating Gyroscopes: A Case Study on a New Dynamically Balanced Dual-Mass Resonator</title><author>Wang, Shihe ; Chen, Jianlin ; Tsukamoto, Takashiro ; Langfelder, Giacomo ; Tanaka, Shuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-a1478e8d8d26ebdfa54f2d14bd7e9e8b7a2da9c0e6eecdb5b37ea309cc0d1f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Case studies</topic><topic>Damping</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Dynamically balanced</topic><topic>Gyroscopes</topic><topic>IP networks</topic><topic>Machining</topic><topic>Microelectromechanical systems</topic><topic>out-of-plane (OOP)</topic><topic>Pitch (inclination)</topic><topic>Q-factor</topic><topic>rate integrating gyroscope (RIG)</topic><topic>Resonant frequencies</topic><topic>Resonant frequency</topic><topic>Resonators</topic><topic>Rolling motion</topic><topic>Sensors</topic><topic>Silicon substrates</topic><topic>Springs</topic><topic>Squeeze films</topic><topic>Structural design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shihe</creatorcontrib><creatorcontrib>Chen, Jianlin</creatorcontrib><creatorcontrib>Tsukamoto, Takashiro</creatorcontrib><creatorcontrib>Langfelder, Giacomo</creatorcontrib><creatorcontrib>Tanaka, Shuji</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Shihe</au><au>Chen, Jianlin</au><au>Tsukamoto, Takashiro</au><au>Langfelder, Giacomo</au><au>Tanaka, Shuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Challenges in Implementing Pitch/Roll Rate Integrating Gyroscopes: A Case Study on a New Dynamically Balanced Dual-Mass Resonator</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-11-15</date><risdate>2023</risdate><volume>23</volume><issue>22</issue><spage>27068</spage><epage>27075</epage><pages>27068-27075</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract><![CDATA[A case study on a new dynamically balanced dual-mass resonator, for implementation in pitch/roll rate integrating gyroscopes (RIGs), is reported in this article. Proper measures have been taken during structural design to minimize the mismatch of both the resonant frequencies and the <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factors between in-plane (IP) and out-of-plane (OOP) modes. To improve the <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factor of OOP mode, which is generally significantly lower than that of IP mode, a dual-mass structure reduces the torque applied to the supporting substrate in the OOP mode. Thus, dominant loss mechanisms are thermoelastic dissipation (TED) and squeeze film damping (SFD). After optimizing design parameters, <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factor machining can be achieved by tuning SFD by operation pressure. The designed microelectromechanical systems (MEMS) resonator was fabricated using two layers of Si substrate combined with Au-Au thermocompression bonding technology. The experimental characterization revealed that the mismatches of resonant frequencies and <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factors were as small as 1.3% and 32%, respectively.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3314897</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2997-834X</orcidid><orcidid>https://orcid.org/0009-0004-6913-7619</orcidid><orcidid>https://orcid.org/0000-0002-7614-7717</orcidid><orcidid>https://orcid.org/0000-0002-2663-3266</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2023-11, Vol.23 (22), p.27068-27075 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2023_3314897 |
source | IEEE Electronic Library (IEL) |
subjects | Case studies Damping Design optimization Design parameters Dynamically balanced Gyroscopes IP networks Machining Microelectromechanical systems out-of-plane (OOP) Pitch (inclination) Q-factor rate integrating gyroscope (RIG) Resonant frequencies Resonant frequency Resonators Rolling motion Sensors Silicon substrates Springs Squeeze films Structural design |
title | Challenges in Implementing Pitch/Roll Rate Integrating Gyroscopes: A Case Study on a New Dynamically Balanced Dual-Mass Resonator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Challenges%20in%20Implementing%20Pitch/Roll%20Rate%20Integrating%20Gyroscopes:%20A%20Case%20Study%20on%20a%20New%20Dynamically%20Balanced%20Dual-Mass%20Resonator&rft.jtitle=IEEE%20sensors%20journal&rft.au=Wang,%20Shihe&rft.date=2023-11-15&rft.volume=23&rft.issue=22&rft.spage=27068&rft.epage=27075&rft.pages=27068-27075&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3314897&rft_dat=%3Cproquest_RIE%3E2890106636%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890106636&rft_id=info:pmid/&rft_ieee_id=10261445&rfr_iscdi=true |