Challenges in Implementing Pitch/Roll Rate Integrating Gyroscopes: A Case Study on a New Dynamically Balanced Dual-Mass Resonator

A case study on a new dynamically balanced dual-mass resonator, for implementation in pitch/roll rate integrating gyroscopes (RIGs), is reported in this article. Proper measures have been taken during structural design to minimize the mismatch of both the resonant frequencies and the {Q} -factors b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-11, Vol.23 (22), p.27068-27075
Hauptverfasser: Wang, Shihe, Chen, Jianlin, Tsukamoto, Takashiro, Langfelder, Giacomo, Tanaka, Shuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27075
container_issue 22
container_start_page 27068
container_title IEEE sensors journal
container_volume 23
creator Wang, Shihe
Chen, Jianlin
Tsukamoto, Takashiro
Langfelder, Giacomo
Tanaka, Shuji
description A case study on a new dynamically balanced dual-mass resonator, for implementation in pitch/roll rate integrating gyroscopes (RIGs), is reported in this article. Proper measures have been taken during structural design to minimize the mismatch of both the resonant frequencies and the {Q} -factors between in-plane (IP) and out-of-plane (OOP) modes. To improve the {Q} -factor of OOP mode, which is generally significantly lower than that of IP mode, a dual-mass structure reduces the torque applied to the supporting substrate in the OOP mode. Thus, dominant loss mechanisms are thermoelastic dissipation (TED) and squeeze film damping (SFD). After optimizing design parameters, {Q} -factor machining can be achieved by tuning SFD by operation pressure. The designed microelectromechanical systems (MEMS) resonator was fabricated using two layers of Si substrate combined with Au-Au thermocompression bonding technology. The experimental characterization revealed that the mismatches of resonant frequencies and {Q} -factors were as small as 1.3% and 32%, respectively.
doi_str_mv 10.1109/JSEN.2023.3314897
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2023_3314897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10261445</ieee_id><sourcerecordid>2890106636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-a1478e8d8d26ebdfa54f2d14bd7e9e8b7a2da9c0e6eecdb5b37ea309cc0d1f73</originalsourceid><addsrcrecordid>eNpNkEFPwkAQhRujiYj-ABMPm3gu7Ha33dYbAiIG0QAHb810dwol7bZ2S0yP_nOLePA0k8x7b_I-x7lldMAYjYYv6-ly4FGPDzhnIozkmdNjvh-6TIrw_Lhz6gouPy6dK2v3lLJI-rLnfI93kOdotmhJZsi8qHIs0DSZ2ZL3rFG74arMc7KCBsncNLit4fc2a-vSqrJC-0BGZAwWybo56JaUhgBZ4heZtAaKTHXpLXmEHIxCTSYHyN1XsJas0JYGmrK-di5SyC3e_M2-s3mabsbP7uJtNh-PFq7yItG4wIQMMdSh9gJMdAq-SD3NRKIlRhgmEjwNkaIYICqd-AmXCJxGSlHNUsn7zv0ptqrLzwPaJt6Xh9p0H2MvjCijQcCDTsVOKtXVszWmcVVnBdRtzGh8BB0fQcdH0PEf6M5zd_JkiPhP7wVMCJ__APcvfEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890106636</pqid></control><display><type>article</type><title>Challenges in Implementing Pitch/Roll Rate Integrating Gyroscopes: A Case Study on a New Dynamically Balanced Dual-Mass Resonator</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Shihe ; Chen, Jianlin ; Tsukamoto, Takashiro ; Langfelder, Giacomo ; Tanaka, Shuji</creator><creatorcontrib>Wang, Shihe ; Chen, Jianlin ; Tsukamoto, Takashiro ; Langfelder, Giacomo ; Tanaka, Shuji</creatorcontrib><description><![CDATA[A case study on a new dynamically balanced dual-mass resonator, for implementation in pitch/roll rate integrating gyroscopes (RIGs), is reported in this article. Proper measures have been taken during structural design to minimize the mismatch of both the resonant frequencies and the <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factors between in-plane (IP) and out-of-plane (OOP) modes. To improve the <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factor of OOP mode, which is generally significantly lower than that of IP mode, a dual-mass structure reduces the torque applied to the supporting substrate in the OOP mode. Thus, dominant loss mechanisms are thermoelastic dissipation (TED) and squeeze film damping (SFD). After optimizing design parameters, <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factor machining can be achieved by tuning SFD by operation pressure. The designed microelectromechanical systems (MEMS) resonator was fabricated using two layers of Si substrate combined with Au-Au thermocompression bonding technology. The experimental characterization revealed that the mismatches of resonant frequencies and <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factors were as small as 1.3% and 32%, respectively.]]></description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3314897</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Case studies ; Damping ; Design optimization ; Design parameters ; Dynamically balanced ; Gyroscopes ; IP networks ; Machining ; Microelectromechanical systems ; out-of-plane (OOP) ; Pitch (inclination) ; Q-factor ; rate integrating gyroscope (RIG) ; Resonant frequencies ; Resonant frequency ; Resonators ; Rolling motion ; Sensors ; Silicon substrates ; Springs ; Squeeze films ; Structural design</subject><ispartof>IEEE sensors journal, 2023-11, Vol.23 (22), p.27068-27075</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-a1478e8d8d26ebdfa54f2d14bd7e9e8b7a2da9c0e6eecdb5b37ea309cc0d1f73</citedby><cites>FETCH-LOGICAL-c294t-a1478e8d8d26ebdfa54f2d14bd7e9e8b7a2da9c0e6eecdb5b37ea309cc0d1f73</cites><orcidid>0000-0002-2997-834X ; 0009-0004-6913-7619 ; 0000-0002-7614-7717 ; 0000-0002-2663-3266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10261445$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10261445$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Shihe</creatorcontrib><creatorcontrib>Chen, Jianlin</creatorcontrib><creatorcontrib>Tsukamoto, Takashiro</creatorcontrib><creatorcontrib>Langfelder, Giacomo</creatorcontrib><creatorcontrib>Tanaka, Shuji</creatorcontrib><title>Challenges in Implementing Pitch/Roll Rate Integrating Gyroscopes: A Case Study on a New Dynamically Balanced Dual-Mass Resonator</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description><![CDATA[A case study on a new dynamically balanced dual-mass resonator, for implementation in pitch/roll rate integrating gyroscopes (RIGs), is reported in this article. Proper measures have been taken during structural design to minimize the mismatch of both the resonant frequencies and the <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factors between in-plane (IP) and out-of-plane (OOP) modes. To improve the <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factor of OOP mode, which is generally significantly lower than that of IP mode, a dual-mass structure reduces the torque applied to the supporting substrate in the OOP mode. Thus, dominant loss mechanisms are thermoelastic dissipation (TED) and squeeze film damping (SFD). After optimizing design parameters, <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factor machining can be achieved by tuning SFD by operation pressure. The designed microelectromechanical systems (MEMS) resonator was fabricated using two layers of Si substrate combined with Au-Au thermocompression bonding technology. The experimental characterization revealed that the mismatches of resonant frequencies and <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factors were as small as 1.3% and 32%, respectively.]]></description><subject>Case studies</subject><subject>Damping</subject><subject>Design optimization</subject><subject>Design parameters</subject><subject>Dynamically balanced</subject><subject>Gyroscopes</subject><subject>IP networks</subject><subject>Machining</subject><subject>Microelectromechanical systems</subject><subject>out-of-plane (OOP)</subject><subject>Pitch (inclination)</subject><subject>Q-factor</subject><subject>rate integrating gyroscope (RIG)</subject><subject>Resonant frequencies</subject><subject>Resonant frequency</subject><subject>Resonators</subject><subject>Rolling motion</subject><subject>Sensors</subject><subject>Silicon substrates</subject><subject>Springs</subject><subject>Squeeze films</subject><subject>Structural design</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFPwkAQhRujiYj-ABMPm3gu7Ha33dYbAiIG0QAHb810dwol7bZ2S0yP_nOLePA0k8x7b_I-x7lldMAYjYYv6-ly4FGPDzhnIozkmdNjvh-6TIrw_Lhz6gouPy6dK2v3lLJI-rLnfI93kOdotmhJZsi8qHIs0DSZ2ZL3rFG74arMc7KCBsncNLit4fc2a-vSqrJC-0BGZAwWybo56JaUhgBZ4heZtAaKTHXpLXmEHIxCTSYHyN1XsJas0JYGmrK-di5SyC3e_M2-s3mabsbP7uJtNh-PFq7yItG4wIQMMdSh9gJMdAq-SD3NRKIlRhgmEjwNkaIYICqd-AmXCJxGSlHNUsn7zv0ptqrLzwPaJt6Xh9p0H2MvjCijQcCDTsVOKtXVszWmcVVnBdRtzGh8BB0fQcdH0PEf6M5zd_JkiPhP7wVMCJ__APcvfEc</recordid><startdate>20231115</startdate><enddate>20231115</enddate><creator>Wang, Shihe</creator><creator>Chen, Jianlin</creator><creator>Tsukamoto, Takashiro</creator><creator>Langfelder, Giacomo</creator><creator>Tanaka, Shuji</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2997-834X</orcidid><orcidid>https://orcid.org/0009-0004-6913-7619</orcidid><orcidid>https://orcid.org/0000-0002-7614-7717</orcidid><orcidid>https://orcid.org/0000-0002-2663-3266</orcidid></search><sort><creationdate>20231115</creationdate><title>Challenges in Implementing Pitch/Roll Rate Integrating Gyroscopes: A Case Study on a New Dynamically Balanced Dual-Mass Resonator</title><author>Wang, Shihe ; Chen, Jianlin ; Tsukamoto, Takashiro ; Langfelder, Giacomo ; Tanaka, Shuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-a1478e8d8d26ebdfa54f2d14bd7e9e8b7a2da9c0e6eecdb5b37ea309cc0d1f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Case studies</topic><topic>Damping</topic><topic>Design optimization</topic><topic>Design parameters</topic><topic>Dynamically balanced</topic><topic>Gyroscopes</topic><topic>IP networks</topic><topic>Machining</topic><topic>Microelectromechanical systems</topic><topic>out-of-plane (OOP)</topic><topic>Pitch (inclination)</topic><topic>Q-factor</topic><topic>rate integrating gyroscope (RIG)</topic><topic>Resonant frequencies</topic><topic>Resonant frequency</topic><topic>Resonators</topic><topic>Rolling motion</topic><topic>Sensors</topic><topic>Silicon substrates</topic><topic>Springs</topic><topic>Squeeze films</topic><topic>Structural design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shihe</creatorcontrib><creatorcontrib>Chen, Jianlin</creatorcontrib><creatorcontrib>Tsukamoto, Takashiro</creatorcontrib><creatorcontrib>Langfelder, Giacomo</creatorcontrib><creatorcontrib>Tanaka, Shuji</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Shihe</au><au>Chen, Jianlin</au><au>Tsukamoto, Takashiro</au><au>Langfelder, Giacomo</au><au>Tanaka, Shuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Challenges in Implementing Pitch/Roll Rate Integrating Gyroscopes: A Case Study on a New Dynamically Balanced Dual-Mass Resonator</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-11-15</date><risdate>2023</risdate><volume>23</volume><issue>22</issue><spage>27068</spage><epage>27075</epage><pages>27068-27075</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract><![CDATA[A case study on a new dynamically balanced dual-mass resonator, for implementation in pitch/roll rate integrating gyroscopes (RIGs), is reported in this article. Proper measures have been taken during structural design to minimize the mismatch of both the resonant frequencies and the <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factors between in-plane (IP) and out-of-plane (OOP) modes. To improve the <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factor of OOP mode, which is generally significantly lower than that of IP mode, a dual-mass structure reduces the torque applied to the supporting substrate in the OOP mode. Thus, dominant loss mechanisms are thermoelastic dissipation (TED) and squeeze film damping (SFD). After optimizing design parameters, <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factor machining can be achieved by tuning SFD by operation pressure. The designed microelectromechanical systems (MEMS) resonator was fabricated using two layers of Si substrate combined with Au-Au thermocompression bonding technology. The experimental characterization revealed that the mismatches of resonant frequencies and <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-factors were as small as 1.3% and 32%, respectively.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3314897</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2997-834X</orcidid><orcidid>https://orcid.org/0009-0004-6913-7619</orcidid><orcidid>https://orcid.org/0000-0002-7614-7717</orcidid><orcidid>https://orcid.org/0000-0002-2663-3266</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-11, Vol.23 (22), p.27068-27075
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2023_3314897
source IEEE Electronic Library (IEL)
subjects Case studies
Damping
Design optimization
Design parameters
Dynamically balanced
Gyroscopes
IP networks
Machining
Microelectromechanical systems
out-of-plane (OOP)
Pitch (inclination)
Q-factor
rate integrating gyroscope (RIG)
Resonant frequencies
Resonant frequency
Resonators
Rolling motion
Sensors
Silicon substrates
Springs
Squeeze films
Structural design
title Challenges in Implementing Pitch/Roll Rate Integrating Gyroscopes: A Case Study on a New Dynamically Balanced Dual-Mass Resonator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Challenges%20in%20Implementing%20Pitch/Roll%20Rate%20Integrating%20Gyroscopes:%20A%20Case%20Study%20on%20a%20New%20Dynamically%20Balanced%20Dual-Mass%20Resonator&rft.jtitle=IEEE%20sensors%20journal&rft.au=Wang,%20Shihe&rft.date=2023-11-15&rft.volume=23&rft.issue=22&rft.spage=27068&rft.epage=27075&rft.pages=27068-27075&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3314897&rft_dat=%3Cproquest_RIE%3E2890106636%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890106636&rft_id=info:pmid/&rft_ieee_id=10261445&rfr_iscdi=true