Noise-Like Features-Assisted GNSS Spoofing Detection Based on Convolutional Autoencoder

The global navigation satellite system (GNSS) is susceptible to spoofing, limiting its uses for national security. As a solution to this problem, this article modeled the GNSS spoofing detection (GNSS-SD) problem as a one-class novelty detection (OND) problem and developed a framework with high accu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-10, Vol.23 (20), p.25473-25486
Hauptverfasser: Zhang, Xiaoxu, Huang, Yonghui, Tian, Ye, Lin, Meiyan, An, Junshe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25486
container_issue 20
container_start_page 25473
container_title IEEE sensors journal
container_volume 23
creator Zhang, Xiaoxu
Huang, Yonghui
Tian, Ye
Lin, Meiyan
An, Junshe
description The global navigation satellite system (GNSS) is susceptible to spoofing, limiting its uses for national security. As a solution to this problem, this article modeled the GNSS spoofing detection (GNSS-SD) problem as a one-class novelty detection (OND) problem and developed a framework with high accuracy and rapid response for GNSS-SD in the postcorrelation domain. Specifically, based on the radio frequency fingerprints (RFFs) of transmitters, this framework utilized three steps to detect spoofing: noise-like feature construction, anomaly score calculation, and adaptive threshold decision-making. To verify the effectiveness of the proposed framework, we performed three comparative experiments using the University of Texas dataset. Compared with traditional signal quality monitoring (SQM) methods, the proposed framework achieved an accuracy of over 99.7%, representing a 14% improvement in complex spoofing scenarios. Besides, it won an accuracy exceeding 4% of the artificial intelligence methods in the existing literature under the same GNSS spoofing scenarios. In addition, in dynamic scenarios with multipath effects, the 93.2% accuracy demonstrated the generality of the proposed framework. Furthermore, the experiments revealed that 96.7% of spoofing can be successfully detected by the framework within a 30-s timeframe.
doi_str_mv 10.1109/JSEN.2023.3311799
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2023_3311799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10247220</ieee_id><sourcerecordid>2878508500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-391e3f9fc72280ff1c2c4660896148cd23a76407108cf5617ff215d8d3fe73f73</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxoMoOKd_gOBDwefOXNI2yeOc21TGfKiib6GkF-mczUzSgf-9LduDcHDH3fcdHz9CroFOAKi6ey7n6wmjjE84BxBKnZAR5LlMQWTydJg5TTMuPs7JRQgbSkGJXIzI-9o1AdNV84XJAqvYeQzpNIQmRKyT5bosk3LnnG3az-QBI5rYuDa5r0J_7YeZa_du2w3LaptMu-iwNa5Gf0nObLUNeHXsY_K2mL_OHtPVy_JpNl2lhqksplwBcqusEYxJai0YZrKioFIVkElTM16JIqMCqDQ2L0BYyyCvZc0tCm4FH5Pbw9-ddz8dhqg3rvN9mKCZFDKnfdFeBQeV8S4Ej1bvfPNd-V8NVA_89MBPD_z0kV_vuTl4GkT8p2dZn5XyP2z9a2M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878508500</pqid></control><display><type>article</type><title>Noise-Like Features-Assisted GNSS Spoofing Detection Based on Convolutional Autoencoder</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xiaoxu ; Huang, Yonghui ; Tian, Ye ; Lin, Meiyan ; An, Junshe</creator><creatorcontrib>Zhang, Xiaoxu ; Huang, Yonghui ; Tian, Ye ; Lin, Meiyan ; An, Junshe</creatorcontrib><description>The global navigation satellite system (GNSS) is susceptible to spoofing, limiting its uses for national security. As a solution to this problem, this article modeled the GNSS spoofing detection (GNSS-SD) problem as a one-class novelty detection (OND) problem and developed a framework with high accuracy and rapid response for GNSS-SD in the postcorrelation domain. Specifically, based on the radio frequency fingerprints (RFFs) of transmitters, this framework utilized three steps to detect spoofing: noise-like feature construction, anomaly score calculation, and adaptive threshold decision-making. To verify the effectiveness of the proposed framework, we performed three comparative experiments using the University of Texas dataset. Compared with traditional signal quality monitoring (SQM) methods, the proposed framework achieved an accuracy of over 99.7%, representing a 14% improvement in complex spoofing scenarios. Besides, it won an accuracy exceeding 4% of the artificial intelligence methods in the existing literature under the same GNSS spoofing scenarios. In addition, in dynamic scenarios with multipath effects, the 93.2% accuracy demonstrated the generality of the proposed framework. Furthermore, the experiments revealed that 96.7% of spoofing can be successfully detected by the framework within a 30-s timeframe.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3311799</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Adaptive threshold ; Artificial intelligence ; Codes ; dynamic scenarios ; Feature extraction ; Global navigation satellite system ; global navigation satellite system spoofing detection (GNSS-SD) ; noise-like feature ; postcorrelation ; radio frequency fingerprints (RFFs) ; Receivers ; Satellites ; Sensors ; Signal monitoring ; Signal quality ; Spoofing ; Training ; Transmitters</subject><ispartof>IEEE sensors journal, 2023-10, Vol.23 (20), p.25473-25486</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-391e3f9fc72280ff1c2c4660896148cd23a76407108cf5617ff215d8d3fe73f73</citedby><cites>FETCH-LOGICAL-c294t-391e3f9fc72280ff1c2c4660896148cd23a76407108cf5617ff215d8d3fe73f73</cites><orcidid>0000-0002-0252-230X ; 0000-0002-5115-825X ; 0000-0001-8758-9804 ; 0000-0002-9745-4177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10247220$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10247220$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xiaoxu</creatorcontrib><creatorcontrib>Huang, Yonghui</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Lin, Meiyan</creatorcontrib><creatorcontrib>An, Junshe</creatorcontrib><title>Noise-Like Features-Assisted GNSS Spoofing Detection Based on Convolutional Autoencoder</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The global navigation satellite system (GNSS) is susceptible to spoofing, limiting its uses for national security. As a solution to this problem, this article modeled the GNSS spoofing detection (GNSS-SD) problem as a one-class novelty detection (OND) problem and developed a framework with high accuracy and rapid response for GNSS-SD in the postcorrelation domain. Specifically, based on the radio frequency fingerprints (RFFs) of transmitters, this framework utilized three steps to detect spoofing: noise-like feature construction, anomaly score calculation, and adaptive threshold decision-making. To verify the effectiveness of the proposed framework, we performed three comparative experiments using the University of Texas dataset. Compared with traditional signal quality monitoring (SQM) methods, the proposed framework achieved an accuracy of over 99.7%, representing a 14% improvement in complex spoofing scenarios. Besides, it won an accuracy exceeding 4% of the artificial intelligence methods in the existing literature under the same GNSS spoofing scenarios. In addition, in dynamic scenarios with multipath effects, the 93.2% accuracy demonstrated the generality of the proposed framework. Furthermore, the experiments revealed that 96.7% of spoofing can be successfully detected by the framework within a 30-s timeframe.</description><subject>Accuracy</subject><subject>Adaptive threshold</subject><subject>Artificial intelligence</subject><subject>Codes</subject><subject>dynamic scenarios</subject><subject>Feature extraction</subject><subject>Global navigation satellite system</subject><subject>global navigation satellite system spoofing detection (GNSS-SD)</subject><subject>noise-like feature</subject><subject>postcorrelation</subject><subject>radio frequency fingerprints (RFFs)</subject><subject>Receivers</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Signal monitoring</subject><subject>Signal quality</subject><subject>Spoofing</subject><subject>Training</subject><subject>Transmitters</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFLwzAQxoMoOKd_gOBDwefOXNI2yeOc21TGfKiib6GkF-mczUzSgf-9LduDcHDH3fcdHz9CroFOAKi6ey7n6wmjjE84BxBKnZAR5LlMQWTydJg5TTMuPs7JRQgbSkGJXIzI-9o1AdNV84XJAqvYeQzpNIQmRKyT5bosk3LnnG3az-QBI5rYuDa5r0J_7YeZa_du2w3LaptMu-iwNa5Gf0nObLUNeHXsY_K2mL_OHtPVy_JpNl2lhqksplwBcqusEYxJai0YZrKioFIVkElTM16JIqMCqDQ2L0BYyyCvZc0tCm4FH5Pbw9-ddz8dhqg3rvN9mKCZFDKnfdFeBQeV8S4Ej1bvfPNd-V8NVA_89MBPD_z0kV_vuTl4GkT8p2dZn5XyP2z9a2M</recordid><startdate>20231015</startdate><enddate>20231015</enddate><creator>Zhang, Xiaoxu</creator><creator>Huang, Yonghui</creator><creator>Tian, Ye</creator><creator>Lin, Meiyan</creator><creator>An, Junshe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0252-230X</orcidid><orcidid>https://orcid.org/0000-0002-5115-825X</orcidid><orcidid>https://orcid.org/0000-0001-8758-9804</orcidid><orcidid>https://orcid.org/0000-0002-9745-4177</orcidid></search><sort><creationdate>20231015</creationdate><title>Noise-Like Features-Assisted GNSS Spoofing Detection Based on Convolutional Autoencoder</title><author>Zhang, Xiaoxu ; Huang, Yonghui ; Tian, Ye ; Lin, Meiyan ; An, Junshe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-391e3f9fc72280ff1c2c4660896148cd23a76407108cf5617ff215d8d3fe73f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Adaptive threshold</topic><topic>Artificial intelligence</topic><topic>Codes</topic><topic>dynamic scenarios</topic><topic>Feature extraction</topic><topic>Global navigation satellite system</topic><topic>global navigation satellite system spoofing detection (GNSS-SD)</topic><topic>noise-like feature</topic><topic>postcorrelation</topic><topic>radio frequency fingerprints (RFFs)</topic><topic>Receivers</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Signal monitoring</topic><topic>Signal quality</topic><topic>Spoofing</topic><topic>Training</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaoxu</creatorcontrib><creatorcontrib>Huang, Yonghui</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Lin, Meiyan</creatorcontrib><creatorcontrib>An, Junshe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xiaoxu</au><au>Huang, Yonghui</au><au>Tian, Ye</au><au>Lin, Meiyan</au><au>An, Junshe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise-Like Features-Assisted GNSS Spoofing Detection Based on Convolutional Autoencoder</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-10-15</date><risdate>2023</risdate><volume>23</volume><issue>20</issue><spage>25473</spage><epage>25486</epage><pages>25473-25486</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The global navigation satellite system (GNSS) is susceptible to spoofing, limiting its uses for national security. As a solution to this problem, this article modeled the GNSS spoofing detection (GNSS-SD) problem as a one-class novelty detection (OND) problem and developed a framework with high accuracy and rapid response for GNSS-SD in the postcorrelation domain. Specifically, based on the radio frequency fingerprints (RFFs) of transmitters, this framework utilized three steps to detect spoofing: noise-like feature construction, anomaly score calculation, and adaptive threshold decision-making. To verify the effectiveness of the proposed framework, we performed three comparative experiments using the University of Texas dataset. Compared with traditional signal quality monitoring (SQM) methods, the proposed framework achieved an accuracy of over 99.7%, representing a 14% improvement in complex spoofing scenarios. Besides, it won an accuracy exceeding 4% of the artificial intelligence methods in the existing literature under the same GNSS spoofing scenarios. In addition, in dynamic scenarios with multipath effects, the 93.2% accuracy demonstrated the generality of the proposed framework. Furthermore, the experiments revealed that 96.7% of spoofing can be successfully detected by the framework within a 30-s timeframe.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3311799</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0252-230X</orcidid><orcidid>https://orcid.org/0000-0002-5115-825X</orcidid><orcidid>https://orcid.org/0000-0001-8758-9804</orcidid><orcidid>https://orcid.org/0000-0002-9745-4177</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-10, Vol.23 (20), p.25473-25486
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2023_3311799
source IEEE Electronic Library (IEL)
subjects Accuracy
Adaptive threshold
Artificial intelligence
Codes
dynamic scenarios
Feature extraction
Global navigation satellite system
global navigation satellite system spoofing detection (GNSS-SD)
noise-like feature
postcorrelation
radio frequency fingerprints (RFFs)
Receivers
Satellites
Sensors
Signal monitoring
Signal quality
Spoofing
Training
Transmitters
title Noise-Like Features-Assisted GNSS Spoofing Detection Based on Convolutional Autoencoder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise-Like%20Features-Assisted%20GNSS%20Spoofing%20Detection%20Based%20on%20Convolutional%20Autoencoder&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhang,%20Xiaoxu&rft.date=2023-10-15&rft.volume=23&rft.issue=20&rft.spage=25473&rft.epage=25486&rft.pages=25473-25486&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3311799&rft_dat=%3Cproquest_RIE%3E2878508500%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878508500&rft_id=info:pmid/&rft_ieee_id=10247220&rfr_iscdi=true