Noise-Like Features-Assisted GNSS Spoofing Detection Based on Convolutional Autoencoder
The global navigation satellite system (GNSS) is susceptible to spoofing, limiting its uses for national security. As a solution to this problem, this article modeled the GNSS spoofing detection (GNSS-SD) problem as a one-class novelty detection (OND) problem and developed a framework with high accu...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2023-10, Vol.23 (20), p.25473-25486 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25486 |
---|---|
container_issue | 20 |
container_start_page | 25473 |
container_title | IEEE sensors journal |
container_volume | 23 |
creator | Zhang, Xiaoxu Huang, Yonghui Tian, Ye Lin, Meiyan An, Junshe |
description | The global navigation satellite system (GNSS) is susceptible to spoofing, limiting its uses for national security. As a solution to this problem, this article modeled the GNSS spoofing detection (GNSS-SD) problem as a one-class novelty detection (OND) problem and developed a framework with high accuracy and rapid response for GNSS-SD in the postcorrelation domain. Specifically, based on the radio frequency fingerprints (RFFs) of transmitters, this framework utilized three steps to detect spoofing: noise-like feature construction, anomaly score calculation, and adaptive threshold decision-making. To verify the effectiveness of the proposed framework, we performed three comparative experiments using the University of Texas dataset. Compared with traditional signal quality monitoring (SQM) methods, the proposed framework achieved an accuracy of over 99.7%, representing a 14% improvement in complex spoofing scenarios. Besides, it won an accuracy exceeding 4% of the artificial intelligence methods in the existing literature under the same GNSS spoofing scenarios. In addition, in dynamic scenarios with multipath effects, the 93.2% accuracy demonstrated the generality of the proposed framework. Furthermore, the experiments revealed that 96.7% of spoofing can be successfully detected by the framework within a 30-s timeframe. |
doi_str_mv | 10.1109/JSEN.2023.3311799 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2023_3311799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10247220</ieee_id><sourcerecordid>2878508500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-391e3f9fc72280ff1c2c4660896148cd23a76407108cf5617ff215d8d3fe73f73</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxoMoOKd_gOBDwefOXNI2yeOc21TGfKiib6GkF-mczUzSgf-9LduDcHDH3fcdHz9CroFOAKi6ey7n6wmjjE84BxBKnZAR5LlMQWTydJg5TTMuPs7JRQgbSkGJXIzI-9o1AdNV84XJAqvYeQzpNIQmRKyT5bosk3LnnG3az-QBI5rYuDa5r0J_7YeZa_du2w3LaptMu-iwNa5Gf0nObLUNeHXsY_K2mL_OHtPVy_JpNl2lhqksplwBcqusEYxJai0YZrKioFIVkElTM16JIqMCqDQ2L0BYyyCvZc0tCm4FH5Pbw9-ddz8dhqg3rvN9mKCZFDKnfdFeBQeV8S4Ej1bvfPNd-V8NVA_89MBPD_z0kV_vuTl4GkT8p2dZn5XyP2z9a2M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878508500</pqid></control><display><type>article</type><title>Noise-Like Features-Assisted GNSS Spoofing Detection Based on Convolutional Autoencoder</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xiaoxu ; Huang, Yonghui ; Tian, Ye ; Lin, Meiyan ; An, Junshe</creator><creatorcontrib>Zhang, Xiaoxu ; Huang, Yonghui ; Tian, Ye ; Lin, Meiyan ; An, Junshe</creatorcontrib><description>The global navigation satellite system (GNSS) is susceptible to spoofing, limiting its uses for national security. As a solution to this problem, this article modeled the GNSS spoofing detection (GNSS-SD) problem as a one-class novelty detection (OND) problem and developed a framework with high accuracy and rapid response for GNSS-SD in the postcorrelation domain. Specifically, based on the radio frequency fingerprints (RFFs) of transmitters, this framework utilized three steps to detect spoofing: noise-like feature construction, anomaly score calculation, and adaptive threshold decision-making. To verify the effectiveness of the proposed framework, we performed three comparative experiments using the University of Texas dataset. Compared with traditional signal quality monitoring (SQM) methods, the proposed framework achieved an accuracy of over 99.7%, representing a 14% improvement in complex spoofing scenarios. Besides, it won an accuracy exceeding 4% of the artificial intelligence methods in the existing literature under the same GNSS spoofing scenarios. In addition, in dynamic scenarios with multipath effects, the 93.2% accuracy demonstrated the generality of the proposed framework. Furthermore, the experiments revealed that 96.7% of spoofing can be successfully detected by the framework within a 30-s timeframe.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3311799</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Adaptive threshold ; Artificial intelligence ; Codes ; dynamic scenarios ; Feature extraction ; Global navigation satellite system ; global navigation satellite system spoofing detection (GNSS-SD) ; noise-like feature ; postcorrelation ; radio frequency fingerprints (RFFs) ; Receivers ; Satellites ; Sensors ; Signal monitoring ; Signal quality ; Spoofing ; Training ; Transmitters</subject><ispartof>IEEE sensors journal, 2023-10, Vol.23 (20), p.25473-25486</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-391e3f9fc72280ff1c2c4660896148cd23a76407108cf5617ff215d8d3fe73f73</citedby><cites>FETCH-LOGICAL-c294t-391e3f9fc72280ff1c2c4660896148cd23a76407108cf5617ff215d8d3fe73f73</cites><orcidid>0000-0002-0252-230X ; 0000-0002-5115-825X ; 0000-0001-8758-9804 ; 0000-0002-9745-4177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10247220$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10247220$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xiaoxu</creatorcontrib><creatorcontrib>Huang, Yonghui</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Lin, Meiyan</creatorcontrib><creatorcontrib>An, Junshe</creatorcontrib><title>Noise-Like Features-Assisted GNSS Spoofing Detection Based on Convolutional Autoencoder</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The global navigation satellite system (GNSS) is susceptible to spoofing, limiting its uses for national security. As a solution to this problem, this article modeled the GNSS spoofing detection (GNSS-SD) problem as a one-class novelty detection (OND) problem and developed a framework with high accuracy and rapid response for GNSS-SD in the postcorrelation domain. Specifically, based on the radio frequency fingerprints (RFFs) of transmitters, this framework utilized three steps to detect spoofing: noise-like feature construction, anomaly score calculation, and adaptive threshold decision-making. To verify the effectiveness of the proposed framework, we performed three comparative experiments using the University of Texas dataset. Compared with traditional signal quality monitoring (SQM) methods, the proposed framework achieved an accuracy of over 99.7%, representing a 14% improvement in complex spoofing scenarios. Besides, it won an accuracy exceeding 4% of the artificial intelligence methods in the existing literature under the same GNSS spoofing scenarios. In addition, in dynamic scenarios with multipath effects, the 93.2% accuracy demonstrated the generality of the proposed framework. Furthermore, the experiments revealed that 96.7% of spoofing can be successfully detected by the framework within a 30-s timeframe.</description><subject>Accuracy</subject><subject>Adaptive threshold</subject><subject>Artificial intelligence</subject><subject>Codes</subject><subject>dynamic scenarios</subject><subject>Feature extraction</subject><subject>Global navigation satellite system</subject><subject>global navigation satellite system spoofing detection (GNSS-SD)</subject><subject>noise-like feature</subject><subject>postcorrelation</subject><subject>radio frequency fingerprints (RFFs)</subject><subject>Receivers</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Signal monitoring</subject><subject>Signal quality</subject><subject>Spoofing</subject><subject>Training</subject><subject>Transmitters</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFLwzAQxoMoOKd_gOBDwefOXNI2yeOc21TGfKiib6GkF-mczUzSgf-9LduDcHDH3fcdHz9CroFOAKi6ey7n6wmjjE84BxBKnZAR5LlMQWTydJg5TTMuPs7JRQgbSkGJXIzI-9o1AdNV84XJAqvYeQzpNIQmRKyT5bosk3LnnG3az-QBI5rYuDa5r0J_7YeZa_du2w3LaptMu-iwNa5Gf0nObLUNeHXsY_K2mL_OHtPVy_JpNl2lhqksplwBcqusEYxJai0YZrKioFIVkElTM16JIqMCqDQ2L0BYyyCvZc0tCm4FH5Pbw9-ddz8dhqg3rvN9mKCZFDKnfdFeBQeV8S4Ej1bvfPNd-V8NVA_89MBPD_z0kV_vuTl4GkT8p2dZn5XyP2z9a2M</recordid><startdate>20231015</startdate><enddate>20231015</enddate><creator>Zhang, Xiaoxu</creator><creator>Huang, Yonghui</creator><creator>Tian, Ye</creator><creator>Lin, Meiyan</creator><creator>An, Junshe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0252-230X</orcidid><orcidid>https://orcid.org/0000-0002-5115-825X</orcidid><orcidid>https://orcid.org/0000-0001-8758-9804</orcidid><orcidid>https://orcid.org/0000-0002-9745-4177</orcidid></search><sort><creationdate>20231015</creationdate><title>Noise-Like Features-Assisted GNSS Spoofing Detection Based on Convolutional Autoencoder</title><author>Zhang, Xiaoxu ; Huang, Yonghui ; Tian, Ye ; Lin, Meiyan ; An, Junshe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-391e3f9fc72280ff1c2c4660896148cd23a76407108cf5617ff215d8d3fe73f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Adaptive threshold</topic><topic>Artificial intelligence</topic><topic>Codes</topic><topic>dynamic scenarios</topic><topic>Feature extraction</topic><topic>Global navigation satellite system</topic><topic>global navigation satellite system spoofing detection (GNSS-SD)</topic><topic>noise-like feature</topic><topic>postcorrelation</topic><topic>radio frequency fingerprints (RFFs)</topic><topic>Receivers</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Signal monitoring</topic><topic>Signal quality</topic><topic>Spoofing</topic><topic>Training</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaoxu</creatorcontrib><creatorcontrib>Huang, Yonghui</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Lin, Meiyan</creatorcontrib><creatorcontrib>An, Junshe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xiaoxu</au><au>Huang, Yonghui</au><au>Tian, Ye</au><au>Lin, Meiyan</au><au>An, Junshe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise-Like Features-Assisted GNSS Spoofing Detection Based on Convolutional Autoencoder</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-10-15</date><risdate>2023</risdate><volume>23</volume><issue>20</issue><spage>25473</spage><epage>25486</epage><pages>25473-25486</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The global navigation satellite system (GNSS) is susceptible to spoofing, limiting its uses for national security. As a solution to this problem, this article modeled the GNSS spoofing detection (GNSS-SD) problem as a one-class novelty detection (OND) problem and developed a framework with high accuracy and rapid response for GNSS-SD in the postcorrelation domain. Specifically, based on the radio frequency fingerprints (RFFs) of transmitters, this framework utilized three steps to detect spoofing: noise-like feature construction, anomaly score calculation, and adaptive threshold decision-making. To verify the effectiveness of the proposed framework, we performed three comparative experiments using the University of Texas dataset. Compared with traditional signal quality monitoring (SQM) methods, the proposed framework achieved an accuracy of over 99.7%, representing a 14% improvement in complex spoofing scenarios. Besides, it won an accuracy exceeding 4% of the artificial intelligence methods in the existing literature under the same GNSS spoofing scenarios. In addition, in dynamic scenarios with multipath effects, the 93.2% accuracy demonstrated the generality of the proposed framework. Furthermore, the experiments revealed that 96.7% of spoofing can be successfully detected by the framework within a 30-s timeframe.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3311799</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0252-230X</orcidid><orcidid>https://orcid.org/0000-0002-5115-825X</orcidid><orcidid>https://orcid.org/0000-0001-8758-9804</orcidid><orcidid>https://orcid.org/0000-0002-9745-4177</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2023-10, Vol.23 (20), p.25473-25486 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2023_3311799 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Adaptive threshold Artificial intelligence Codes dynamic scenarios Feature extraction Global navigation satellite system global navigation satellite system spoofing detection (GNSS-SD) noise-like feature postcorrelation radio frequency fingerprints (RFFs) Receivers Satellites Sensors Signal monitoring Signal quality Spoofing Training Transmitters |
title | Noise-Like Features-Assisted GNSS Spoofing Detection Based on Convolutional Autoencoder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise-Like%20Features-Assisted%20GNSS%20Spoofing%20Detection%20Based%20on%20Convolutional%20Autoencoder&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhang,%20Xiaoxu&rft.date=2023-10-15&rft.volume=23&rft.issue=20&rft.spage=25473&rft.epage=25486&rft.pages=25473-25486&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3311799&rft_dat=%3Cproquest_RIE%3E2878508500%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878508500&rft_id=info:pmid/&rft_ieee_id=10247220&rfr_iscdi=true |