Angle Residual Based NLOS Suppression and Localization Method in Wireless Sensor Networks

With the rapid development of Internet of Things (IOT) applications, the performance of existing wireless localization methods under non-line-of-sight (NLOS) transmission environments is seriously challenged. Therefore, this paper proposes a new definition of residual, i.e., the angle residual. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-07, Vol.23 (13), p.1-1
Hauptverfasser: Wang, Jiale, Wen, Jiangang, Hua, Jingyu, Feng, Xiaofei, Xu, Zhijiang, Ni, Zhengwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 13
container_start_page 1
container_title IEEE sensors journal
container_volume 23
creator Wang, Jiale
Wen, Jiangang
Hua, Jingyu
Feng, Xiaofei
Xu, Zhijiang
Ni, Zhengwei
description With the rapid development of Internet of Things (IOT) applications, the performance of existing wireless localization methods under non-line-of-sight (NLOS) transmission environments is seriously challenged. Therefore, this paper proposes a new definition of residual, i.e., the angle residual. The key target of angle residual is to detect line-of-sight (LOS) links from measured and calculated angle parameters. The target position is then estimated by two-step weighted least squares (TS-WLS) algorithm, where only positioning parameters of LOS link are included. Simulation shows that the proposed algorithm performs better than traditional algorithms, especially when the mobile node (MN) position and the NLOS link distribution are randomly generated. Therefore, the proposed method effectively improves the positioning performance and enhances the localization stability in real NLOS transmission environments.
doi_str_mv 10.1109/JSEN.2023.3275627
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2023_3275627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10136605</ieee_id><sourcerecordid>2831507745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-e3879c46c7a959d4024fea50eba2a964d3971f3ae5be873e36d8c162a81979603</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmazx1rqF7EFo6inZZtMNTVm426C6K83oT14mmF43hnmQeiUkgmlRF_cZfPFhBHGJ5wpGTO1h0ZUyiSiSiT7Q89JJLh6OURHIWwIoVpJNUKv0_qtAvwAoSw6W-FLG6DAi3SZ4axrGg8hlK7Gti5w6nJblb-2HQb30L67Apc1fi49VD2GM6iD83gB7bfzH-EYHaxtFeBkV8fo6Wr-OLuJ0uX17WyaRjnToo2AJ0rnIs6V1VIXgjCxBisJrCyzOhYF14quuQW5gkRx4HGR5DRmNuk_0DHhY3S-3dt499VBaM3Gdb7uTxqWcCqJUkL2FN1SuXcheFibxpef1v8YSsxg0AwGzWDQ7Az2mbNtpgSAfzzlcUwk_wOah2xs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831507745</pqid></control><display><type>article</type><title>Angle Residual Based NLOS Suppression and Localization Method in Wireless Sensor Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Jiale ; Wen, Jiangang ; Hua, Jingyu ; Feng, Xiaofei ; Xu, Zhijiang ; Ni, Zhengwei</creator><creatorcontrib>Wang, Jiale ; Wen, Jiangang ; Hua, Jingyu ; Feng, Xiaofei ; Xu, Zhijiang ; Ni, Zhengwei</creatorcontrib><description>With the rapid development of Internet of Things (IOT) applications, the performance of existing wireless localization methods under non-line-of-sight (NLOS) transmission environments is seriously challenged. Therefore, this paper proposes a new definition of residual, i.e., the angle residual. The key target of angle residual is to detect line-of-sight (LOS) links from measured and calculated angle parameters. The target position is then estimated by two-step weighted least squares (TS-WLS) algorithm, where only positioning parameters of LOS link are included. Simulation shows that the proposed algorithm performs better than traditional algorithms, especially when the mobile node (MN) position and the NLOS link distribution are randomly generated. Therefore, the proposed method effectively improves the positioning performance and enhances the localization stability in real NLOS transmission environments.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3275627</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Angle residual ; Internet of Things ; Line of sight ; Localization method ; Location awareness ; Manganese ; Measurement uncertainty ; Noise measurement ; Non-line of sight error ; Parameters ; Position measurement ; Topology ; Wireless communication ; Wireless localization ; Wireless Network ; Wireless Sensor Network ; Wireless sensor networks</subject><ispartof>IEEE sensors journal, 2023-07, Vol.23 (13), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-e3879c46c7a959d4024fea50eba2a964d3971f3ae5be873e36d8c162a81979603</citedby><cites>FETCH-LOGICAL-c294t-e3879c46c7a959d4024fea50eba2a964d3971f3ae5be873e36d8c162a81979603</cites><orcidid>0000-0002-9895-0666 ; 0000-0002-8691-9602 ; 0000-0003-1377-6775 ; 0000-0002-9247-4347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10136605$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10136605$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Jiale</creatorcontrib><creatorcontrib>Wen, Jiangang</creatorcontrib><creatorcontrib>Hua, Jingyu</creatorcontrib><creatorcontrib>Feng, Xiaofei</creatorcontrib><creatorcontrib>Xu, Zhijiang</creatorcontrib><creatorcontrib>Ni, Zhengwei</creatorcontrib><title>Angle Residual Based NLOS Suppression and Localization Method in Wireless Sensor Networks</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>With the rapid development of Internet of Things (IOT) applications, the performance of existing wireless localization methods under non-line-of-sight (NLOS) transmission environments is seriously challenged. Therefore, this paper proposes a new definition of residual, i.e., the angle residual. The key target of angle residual is to detect line-of-sight (LOS) links from measured and calculated angle parameters. The target position is then estimated by two-step weighted least squares (TS-WLS) algorithm, where only positioning parameters of LOS link are included. Simulation shows that the proposed algorithm performs better than traditional algorithms, especially when the mobile node (MN) position and the NLOS link distribution are randomly generated. Therefore, the proposed method effectively improves the positioning performance and enhances the localization stability in real NLOS transmission environments.</description><subject>Algorithms</subject><subject>Angle residual</subject><subject>Internet of Things</subject><subject>Line of sight</subject><subject>Localization method</subject><subject>Location awareness</subject><subject>Manganese</subject><subject>Measurement uncertainty</subject><subject>Noise measurement</subject><subject>Non-line of sight error</subject><subject>Parameters</subject><subject>Position measurement</subject><subject>Topology</subject><subject>Wireless communication</subject><subject>Wireless localization</subject><subject>Wireless Network</subject><subject>Wireless Sensor Network</subject><subject>Wireless sensor networks</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmazx1rqF7EFo6inZZtMNTVm426C6K83oT14mmF43hnmQeiUkgmlRF_cZfPFhBHGJ5wpGTO1h0ZUyiSiSiT7Q89JJLh6OURHIWwIoVpJNUKv0_qtAvwAoSw6W-FLG6DAi3SZ4axrGg8hlK7Gti5w6nJblb-2HQb30L67Apc1fi49VD2GM6iD83gB7bfzH-EYHaxtFeBkV8fo6Wr-OLuJ0uX17WyaRjnToo2AJ0rnIs6V1VIXgjCxBisJrCyzOhYF14quuQW5gkRx4HGR5DRmNuk_0DHhY3S-3dt499VBaM3Gdb7uTxqWcCqJUkL2FN1SuXcheFibxpef1v8YSsxg0AwGzWDQ7Az2mbNtpgSAfzzlcUwk_wOah2xs</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Wang, Jiale</creator><creator>Wen, Jiangang</creator><creator>Hua, Jingyu</creator><creator>Feng, Xiaofei</creator><creator>Xu, Zhijiang</creator><creator>Ni, Zhengwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9895-0666</orcidid><orcidid>https://orcid.org/0000-0002-8691-9602</orcidid><orcidid>https://orcid.org/0000-0003-1377-6775</orcidid><orcidid>https://orcid.org/0000-0002-9247-4347</orcidid></search><sort><creationdate>20230701</creationdate><title>Angle Residual Based NLOS Suppression and Localization Method in Wireless Sensor Networks</title><author>Wang, Jiale ; Wen, Jiangang ; Hua, Jingyu ; Feng, Xiaofei ; Xu, Zhijiang ; Ni, Zhengwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-e3879c46c7a959d4024fea50eba2a964d3971f3ae5be873e36d8c162a81979603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Angle residual</topic><topic>Internet of Things</topic><topic>Line of sight</topic><topic>Localization method</topic><topic>Location awareness</topic><topic>Manganese</topic><topic>Measurement uncertainty</topic><topic>Noise measurement</topic><topic>Non-line of sight error</topic><topic>Parameters</topic><topic>Position measurement</topic><topic>Topology</topic><topic>Wireless communication</topic><topic>Wireless localization</topic><topic>Wireless Network</topic><topic>Wireless Sensor Network</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jiale</creatorcontrib><creatorcontrib>Wen, Jiangang</creatorcontrib><creatorcontrib>Hua, Jingyu</creatorcontrib><creatorcontrib>Feng, Xiaofei</creatorcontrib><creatorcontrib>Xu, Zhijiang</creatorcontrib><creatorcontrib>Ni, Zhengwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Jiale</au><au>Wen, Jiangang</au><au>Hua, Jingyu</au><au>Feng, Xiaofei</au><au>Xu, Zhijiang</au><au>Ni, Zhengwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angle Residual Based NLOS Suppression and Localization Method in Wireless Sensor Networks</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>23</volume><issue>13</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>With the rapid development of Internet of Things (IOT) applications, the performance of existing wireless localization methods under non-line-of-sight (NLOS) transmission environments is seriously challenged. Therefore, this paper proposes a new definition of residual, i.e., the angle residual. The key target of angle residual is to detect line-of-sight (LOS) links from measured and calculated angle parameters. The target position is then estimated by two-step weighted least squares (TS-WLS) algorithm, where only positioning parameters of LOS link are included. Simulation shows that the proposed algorithm performs better than traditional algorithms, especially when the mobile node (MN) position and the NLOS link distribution are randomly generated. Therefore, the proposed method effectively improves the positioning performance and enhances the localization stability in real NLOS transmission environments.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3275627</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9895-0666</orcidid><orcidid>https://orcid.org/0000-0002-8691-9602</orcidid><orcidid>https://orcid.org/0000-0003-1377-6775</orcidid><orcidid>https://orcid.org/0000-0002-9247-4347</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-07, Vol.23 (13), p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2023_3275627
source IEEE Electronic Library (IEL)
subjects Algorithms
Angle residual
Internet of Things
Line of sight
Localization method
Location awareness
Manganese
Measurement uncertainty
Noise measurement
Non-line of sight error
Parameters
Position measurement
Topology
Wireless communication
Wireless localization
Wireless Network
Wireless Sensor Network
Wireless sensor networks
title Angle Residual Based NLOS Suppression and Localization Method in Wireless Sensor Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T20%3A33%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angle%20Residual%20Based%20NLOS%20Suppression%20and%20Localization%20Method%20in%20Wireless%20Sensor%20Networks&rft.jtitle=IEEE%20sensors%20journal&rft.au=Wang,%20Jiale&rft.date=2023-07-01&rft.volume=23&rft.issue=13&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3275627&rft_dat=%3Cproquest_RIE%3E2831507745%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831507745&rft_id=info:pmid/&rft_ieee_id=10136605&rfr_iscdi=true