Low-complexity Adaptive Beamforming Algorithm with High Dimensional and Small Samples
A large-scale array (LSA) inevitably encounter scenarios with a small number of samples, and its beamformer suffers from high computational complexity. High computational complexity prevents the system from being used in practical online engineering applications. The complex vector of the beamformer...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2023-07, Vol.23 (14), p.1-1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 14 |
container_start_page | 1 |
container_title | IEEE sensors journal |
container_volume | 23 |
creator | Zhang, Xuejun Feng, Dazheng |
description | A large-scale array (LSA) inevitably encounter scenarios with a small number of samples, and its beamformer suffers from high computational complexity. High computational complexity prevents the system from being used in practical online engineering applications. The complex vector of the beamformer weights can be expressed as the product of training snapshots and the signal steering vector, and a coefficient vector, since the optimal weight vector is a linear combination of basis vectors of the signal-plus-interference subspace. In this study, a new adaptive beamformer is developed on the basis of the minimum variance distortionless response (MVDR) criterion and kernel techniques. The new beamformer only needs to compute the inversion of a low-dimensional Gram matrix instead of the high-dimensional sample covariance matrix, which significantly reduces the calculation cost. Moreover, an efficient loading parameter calculation method (only related to the received matrix and not required user-defined parameters) is derived, which can adaptively suppress the mismatches of the ill-conditioned Gram matrix. Furthermore, a fast version of the new beamformer is formulated for the LSA under the scanning mode. Simulation results demonstrate that the new beamformer achieves better performance and a lower computation load than existing algorithms for a small number of samples. Especially, insufficient samples and high computational complexity problems are more frequently aroused in the space-time broadband array signal processing. Interestingly, the new techniques can be successfully extended to wideband array signal processing and yield satisfactory beam pattern shapes. |
doi_str_mv | 10.1109/JSEN.2023.3250265 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2023_3250265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10083005</ieee_id><sourcerecordid>2837138505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-e6d75ffddb509fd8f580d9ffefbaa538409426d9b2a3652cbeebd90286b9fa333</originalsourceid><addsrcrecordid>eNpNkL1OwzAURi0EEqXwAEgMlphT_BMn9lhKoaAKhlKJzXJiu3WVxMVOKX17ErUDy713ON-nqwPALUYjjJF4eFtM30cEETqihCGSsTMwwIzxBOcpP-9vipKU5l-X4CrGDUJY5CwfgOXc75PS19vK_Lr2AMdabVv3Y-CjUbX1oXbNCo6rlQ-uXddw3004c6s1fHK1aaLzjaqgajRc1Kqq4EL1TfEaXFhVRXNz2kOwfJ5-TmbJ_OPldTKeJyVJszYxmc6ZtVoXDAmruWUcaWGtsYVSjPIUiZRkWhRE0YyRsjCm0AIRnhXCKkrpENwfe7fBf-9MbOXG70L3UpSE0xxTzhDrKHykyuBjDMbKbXC1CgeJkeztyd6e7O3Jk70uc3fMOGPMPx5xirrKPxVgbMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837138505</pqid></control><display><type>article</type><title>Low-complexity Adaptive Beamforming Algorithm with High Dimensional and Small Samples</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xuejun ; Feng, Dazheng</creator><creatorcontrib>Zhang, Xuejun ; Feng, Dazheng</creatorcontrib><description>A large-scale array (LSA) inevitably encounter scenarios with a small number of samples, and its beamformer suffers from high computational complexity. High computational complexity prevents the system from being used in practical online engineering applications. The complex vector of the beamformer weights can be expressed as the product of training snapshots and the signal steering vector, and a coefficient vector, since the optimal weight vector is a linear combination of basis vectors of the signal-plus-interference subspace. In this study, a new adaptive beamformer is developed on the basis of the minimum variance distortionless response (MVDR) criterion and kernel techniques. The new beamformer only needs to compute the inversion of a low-dimensional Gram matrix instead of the high-dimensional sample covariance matrix, which significantly reduces the calculation cost. Moreover, an efficient loading parameter calculation method (only related to the received matrix and not required user-defined parameters) is derived, which can adaptively suppress the mismatches of the ill-conditioned Gram matrix. Furthermore, a fast version of the new beamformer is formulated for the LSA under the scanning mode. Simulation results demonstrate that the new beamformer achieves better performance and a lower computation load than existing algorithms for a small number of samples. Especially, insufficient samples and high computational complexity problems are more frequently aroused in the space-time broadband array signal processing. Interestingly, the new techniques can be successfully extended to wideband array signal processing and yield satisfactory beam pattern shapes.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3250265</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; Array signal processing ; Arrays ; Beamforming ; Broadband ; Complexity ; Costs ; Covariance matrices ; Covariance matrix ; Gram matrix ; Interference ; Large-scale array ; Mathematical analysis ; Parameters ; sample covariance matrix ; scanning mode ; Sensor arrays ; Sensors ; Shrinkage technique ; Signal processing ; Signal processing algorithms ; small samples case ; Steering ; Vectors (mathematics) ; wideband beamforming</subject><ispartof>IEEE sensors journal, 2023-07, Vol.23 (14), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-e6d75ffddb509fd8f580d9ffefbaa538409426d9b2a3652cbeebd90286b9fa333</cites><orcidid>0000-0003-3495-3777 ; 0000-0002-0168-8340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10083005$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10083005$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xuejun</creatorcontrib><creatorcontrib>Feng, Dazheng</creatorcontrib><title>Low-complexity Adaptive Beamforming Algorithm with High Dimensional and Small Samples</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>A large-scale array (LSA) inevitably encounter scenarios with a small number of samples, and its beamformer suffers from high computational complexity. High computational complexity prevents the system from being used in practical online engineering applications. The complex vector of the beamformer weights can be expressed as the product of training snapshots and the signal steering vector, and a coefficient vector, since the optimal weight vector is a linear combination of basis vectors of the signal-plus-interference subspace. In this study, a new adaptive beamformer is developed on the basis of the minimum variance distortionless response (MVDR) criterion and kernel techniques. The new beamformer only needs to compute the inversion of a low-dimensional Gram matrix instead of the high-dimensional sample covariance matrix, which significantly reduces the calculation cost. Moreover, an efficient loading parameter calculation method (only related to the received matrix and not required user-defined parameters) is derived, which can adaptively suppress the mismatches of the ill-conditioned Gram matrix. Furthermore, a fast version of the new beamformer is formulated for the LSA under the scanning mode. Simulation results demonstrate that the new beamformer achieves better performance and a lower computation load than existing algorithms for a small number of samples. Especially, insufficient samples and high computational complexity problems are more frequently aroused in the space-time broadband array signal processing. Interestingly, the new techniques can be successfully extended to wideband array signal processing and yield satisfactory beam pattern shapes.</description><subject>Adaptive algorithms</subject><subject>Array signal processing</subject><subject>Arrays</subject><subject>Beamforming</subject><subject>Broadband</subject><subject>Complexity</subject><subject>Costs</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Gram matrix</subject><subject>Interference</subject><subject>Large-scale array</subject><subject>Mathematical analysis</subject><subject>Parameters</subject><subject>sample covariance matrix</subject><subject>scanning mode</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Shrinkage technique</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>small samples case</subject><subject>Steering</subject><subject>Vectors (mathematics)</subject><subject>wideband beamforming</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1OwzAURi0EEqXwAEgMlphT_BMn9lhKoaAKhlKJzXJiu3WVxMVOKX17ErUDy713ON-nqwPALUYjjJF4eFtM30cEETqihCGSsTMwwIzxBOcpP-9vipKU5l-X4CrGDUJY5CwfgOXc75PS19vK_Lr2AMdabVv3Y-CjUbX1oXbNCo6rlQ-uXddw3004c6s1fHK1aaLzjaqgajRc1Kqq4EL1TfEaXFhVRXNz2kOwfJ5-TmbJ_OPldTKeJyVJszYxmc6ZtVoXDAmruWUcaWGtsYVSjPIUiZRkWhRE0YyRsjCm0AIRnhXCKkrpENwfe7fBf-9MbOXG70L3UpSE0xxTzhDrKHykyuBjDMbKbXC1CgeJkeztyd6e7O3Jk70uc3fMOGPMPx5xirrKPxVgbMU</recordid><startdate>20230715</startdate><enddate>20230715</enddate><creator>Zhang, Xuejun</creator><creator>Feng, Dazheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3495-3777</orcidid><orcidid>https://orcid.org/0000-0002-0168-8340</orcidid></search><sort><creationdate>20230715</creationdate><title>Low-complexity Adaptive Beamforming Algorithm with High Dimensional and Small Samples</title><author>Zhang, Xuejun ; Feng, Dazheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-e6d75ffddb509fd8f580d9ffefbaa538409426d9b2a3652cbeebd90286b9fa333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive algorithms</topic><topic>Array signal processing</topic><topic>Arrays</topic><topic>Beamforming</topic><topic>Broadband</topic><topic>Complexity</topic><topic>Costs</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Gram matrix</topic><topic>Interference</topic><topic>Large-scale array</topic><topic>Mathematical analysis</topic><topic>Parameters</topic><topic>sample covariance matrix</topic><topic>scanning mode</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Shrinkage technique</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>small samples case</topic><topic>Steering</topic><topic>Vectors (mathematics)</topic><topic>wideband beamforming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xuejun</creatorcontrib><creatorcontrib>Feng, Dazheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xuejun</au><au>Feng, Dazheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-complexity Adaptive Beamforming Algorithm with High Dimensional and Small Samples</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-07-15</date><risdate>2023</risdate><volume>23</volume><issue>14</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>A large-scale array (LSA) inevitably encounter scenarios with a small number of samples, and its beamformer suffers from high computational complexity. High computational complexity prevents the system from being used in practical online engineering applications. The complex vector of the beamformer weights can be expressed as the product of training snapshots and the signal steering vector, and a coefficient vector, since the optimal weight vector is a linear combination of basis vectors of the signal-plus-interference subspace. In this study, a new adaptive beamformer is developed on the basis of the minimum variance distortionless response (MVDR) criterion and kernel techniques. The new beamformer only needs to compute the inversion of a low-dimensional Gram matrix instead of the high-dimensional sample covariance matrix, which significantly reduces the calculation cost. Moreover, an efficient loading parameter calculation method (only related to the received matrix and not required user-defined parameters) is derived, which can adaptively suppress the mismatches of the ill-conditioned Gram matrix. Furthermore, a fast version of the new beamformer is formulated for the LSA under the scanning mode. Simulation results demonstrate that the new beamformer achieves better performance and a lower computation load than existing algorithms for a small number of samples. Especially, insufficient samples and high computational complexity problems are more frequently aroused in the space-time broadband array signal processing. Interestingly, the new techniques can be successfully extended to wideband array signal processing and yield satisfactory beam pattern shapes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3250265</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3495-3777</orcidid><orcidid>https://orcid.org/0000-0002-0168-8340</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2023-07, Vol.23 (14), p.1-1 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2023_3250265 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive algorithms Array signal processing Arrays Beamforming Broadband Complexity Costs Covariance matrices Covariance matrix Gram matrix Interference Large-scale array Mathematical analysis Parameters sample covariance matrix scanning mode Sensor arrays Sensors Shrinkage technique Signal processing Signal processing algorithms small samples case Steering Vectors (mathematics) wideband beamforming |
title | Low-complexity Adaptive Beamforming Algorithm with High Dimensional and Small Samples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-complexity%20Adaptive%20Beamforming%20Algorithm%20with%20High%20Dimensional%20and%20Small%20Samples&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhang,%20Xuejun&rft.date=2023-07-15&rft.volume=23&rft.issue=14&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3250265&rft_dat=%3Cproquest_RIE%3E2837138505%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837138505&rft_id=info:pmid/&rft_ieee_id=10083005&rfr_iscdi=true |