Low-complexity Adaptive Beamforming Algorithm with High Dimensional and Small Samples

A large-scale array (LSA) inevitably encounter scenarios with a small number of samples, and its beamformer suffers from high computational complexity. High computational complexity prevents the system from being used in practical online engineering applications. The complex vector of the beamformer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-07, Vol.23 (14), p.1-1
Hauptverfasser: Zhang, Xuejun, Feng, Dazheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 14
container_start_page 1
container_title IEEE sensors journal
container_volume 23
creator Zhang, Xuejun
Feng, Dazheng
description A large-scale array (LSA) inevitably encounter scenarios with a small number of samples, and its beamformer suffers from high computational complexity. High computational complexity prevents the system from being used in practical online engineering applications. The complex vector of the beamformer weights can be expressed as the product of training snapshots and the signal steering vector, and a coefficient vector, since the optimal weight vector is a linear combination of basis vectors of the signal-plus-interference subspace. In this study, a new adaptive beamformer is developed on the basis of the minimum variance distortionless response (MVDR) criterion and kernel techniques. The new beamformer only needs to compute the inversion of a low-dimensional Gram matrix instead of the high-dimensional sample covariance matrix, which significantly reduces the calculation cost. Moreover, an efficient loading parameter calculation method (only related to the received matrix and not required user-defined parameters) is derived, which can adaptively suppress the mismatches of the ill-conditioned Gram matrix. Furthermore, a fast version of the new beamformer is formulated for the LSA under the scanning mode. Simulation results demonstrate that the new beamformer achieves better performance and a lower computation load than existing algorithms for a small number of samples. Especially, insufficient samples and high computational complexity problems are more frequently aroused in the space-time broadband array signal processing. Interestingly, the new techniques can be successfully extended to wideband array signal processing and yield satisfactory beam pattern shapes.
doi_str_mv 10.1109/JSEN.2023.3250265
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2023_3250265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10083005</ieee_id><sourcerecordid>2837138505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-e6d75ffddb509fd8f580d9ffefbaa538409426d9b2a3652cbeebd90286b9fa333</originalsourceid><addsrcrecordid>eNpNkL1OwzAURi0EEqXwAEgMlphT_BMn9lhKoaAKhlKJzXJiu3WVxMVOKX17ErUDy713ON-nqwPALUYjjJF4eFtM30cEETqihCGSsTMwwIzxBOcpP-9vipKU5l-X4CrGDUJY5CwfgOXc75PS19vK_Lr2AMdabVv3Y-CjUbX1oXbNCo6rlQ-uXddw3004c6s1fHK1aaLzjaqgajRc1Kqq4EL1TfEaXFhVRXNz2kOwfJ5-TmbJ_OPldTKeJyVJszYxmc6ZtVoXDAmruWUcaWGtsYVSjPIUiZRkWhRE0YyRsjCm0AIRnhXCKkrpENwfe7fBf-9MbOXG70L3UpSE0xxTzhDrKHykyuBjDMbKbXC1CgeJkeztyd6e7O3Jk70uc3fMOGPMPx5xirrKPxVgbMU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2837138505</pqid></control><display><type>article</type><title>Low-complexity Adaptive Beamforming Algorithm with High Dimensional and Small Samples</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xuejun ; Feng, Dazheng</creator><creatorcontrib>Zhang, Xuejun ; Feng, Dazheng</creatorcontrib><description>A large-scale array (LSA) inevitably encounter scenarios with a small number of samples, and its beamformer suffers from high computational complexity. High computational complexity prevents the system from being used in practical online engineering applications. The complex vector of the beamformer weights can be expressed as the product of training snapshots and the signal steering vector, and a coefficient vector, since the optimal weight vector is a linear combination of basis vectors of the signal-plus-interference subspace. In this study, a new adaptive beamformer is developed on the basis of the minimum variance distortionless response (MVDR) criterion and kernel techniques. The new beamformer only needs to compute the inversion of a low-dimensional Gram matrix instead of the high-dimensional sample covariance matrix, which significantly reduces the calculation cost. Moreover, an efficient loading parameter calculation method (only related to the received matrix and not required user-defined parameters) is derived, which can adaptively suppress the mismatches of the ill-conditioned Gram matrix. Furthermore, a fast version of the new beamformer is formulated for the LSA under the scanning mode. Simulation results demonstrate that the new beamformer achieves better performance and a lower computation load than existing algorithms for a small number of samples. Especially, insufficient samples and high computational complexity problems are more frequently aroused in the space-time broadband array signal processing. Interestingly, the new techniques can be successfully extended to wideband array signal processing and yield satisfactory beam pattern shapes.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2023.3250265</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; Array signal processing ; Arrays ; Beamforming ; Broadband ; Complexity ; Costs ; Covariance matrices ; Covariance matrix ; Gram matrix ; Interference ; Large-scale array ; Mathematical analysis ; Parameters ; sample covariance matrix ; scanning mode ; Sensor arrays ; Sensors ; Shrinkage technique ; Signal processing ; Signal processing algorithms ; small samples case ; Steering ; Vectors (mathematics) ; wideband beamforming</subject><ispartof>IEEE sensors journal, 2023-07, Vol.23 (14), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-e6d75ffddb509fd8f580d9ffefbaa538409426d9b2a3652cbeebd90286b9fa333</cites><orcidid>0000-0003-3495-3777 ; 0000-0002-0168-8340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10083005$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10083005$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xuejun</creatorcontrib><creatorcontrib>Feng, Dazheng</creatorcontrib><title>Low-complexity Adaptive Beamforming Algorithm with High Dimensional and Small Samples</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>A large-scale array (LSA) inevitably encounter scenarios with a small number of samples, and its beamformer suffers from high computational complexity. High computational complexity prevents the system from being used in practical online engineering applications. The complex vector of the beamformer weights can be expressed as the product of training snapshots and the signal steering vector, and a coefficient vector, since the optimal weight vector is a linear combination of basis vectors of the signal-plus-interference subspace. In this study, a new adaptive beamformer is developed on the basis of the minimum variance distortionless response (MVDR) criterion and kernel techniques. The new beamformer only needs to compute the inversion of a low-dimensional Gram matrix instead of the high-dimensional sample covariance matrix, which significantly reduces the calculation cost. Moreover, an efficient loading parameter calculation method (only related to the received matrix and not required user-defined parameters) is derived, which can adaptively suppress the mismatches of the ill-conditioned Gram matrix. Furthermore, a fast version of the new beamformer is formulated for the LSA under the scanning mode. Simulation results demonstrate that the new beamformer achieves better performance and a lower computation load than existing algorithms for a small number of samples. Especially, insufficient samples and high computational complexity problems are more frequently aroused in the space-time broadband array signal processing. Interestingly, the new techniques can be successfully extended to wideband array signal processing and yield satisfactory beam pattern shapes.</description><subject>Adaptive algorithms</subject><subject>Array signal processing</subject><subject>Arrays</subject><subject>Beamforming</subject><subject>Broadband</subject><subject>Complexity</subject><subject>Costs</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Gram matrix</subject><subject>Interference</subject><subject>Large-scale array</subject><subject>Mathematical analysis</subject><subject>Parameters</subject><subject>sample covariance matrix</subject><subject>scanning mode</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Shrinkage technique</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>small samples case</subject><subject>Steering</subject><subject>Vectors (mathematics)</subject><subject>wideband beamforming</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1OwzAURi0EEqXwAEgMlphT_BMn9lhKoaAKhlKJzXJiu3WVxMVOKX17ErUDy713ON-nqwPALUYjjJF4eFtM30cEETqihCGSsTMwwIzxBOcpP-9vipKU5l-X4CrGDUJY5CwfgOXc75PS19vK_Lr2AMdabVv3Y-CjUbX1oXbNCo6rlQ-uXddw3004c6s1fHK1aaLzjaqgajRc1Kqq4EL1TfEaXFhVRXNz2kOwfJ5-TmbJ_OPldTKeJyVJszYxmc6ZtVoXDAmruWUcaWGtsYVSjPIUiZRkWhRE0YyRsjCm0AIRnhXCKkrpENwfe7fBf-9MbOXG70L3UpSE0xxTzhDrKHykyuBjDMbKbXC1CgeJkeztyd6e7O3Jk70uc3fMOGPMPx5xirrKPxVgbMU</recordid><startdate>20230715</startdate><enddate>20230715</enddate><creator>Zhang, Xuejun</creator><creator>Feng, Dazheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3495-3777</orcidid><orcidid>https://orcid.org/0000-0002-0168-8340</orcidid></search><sort><creationdate>20230715</creationdate><title>Low-complexity Adaptive Beamforming Algorithm with High Dimensional and Small Samples</title><author>Zhang, Xuejun ; Feng, Dazheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-e6d75ffddb509fd8f580d9ffefbaa538409426d9b2a3652cbeebd90286b9fa333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive algorithms</topic><topic>Array signal processing</topic><topic>Arrays</topic><topic>Beamforming</topic><topic>Broadband</topic><topic>Complexity</topic><topic>Costs</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Gram matrix</topic><topic>Interference</topic><topic>Large-scale array</topic><topic>Mathematical analysis</topic><topic>Parameters</topic><topic>sample covariance matrix</topic><topic>scanning mode</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Shrinkage technique</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>small samples case</topic><topic>Steering</topic><topic>Vectors (mathematics)</topic><topic>wideband beamforming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xuejun</creatorcontrib><creatorcontrib>Feng, Dazheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xuejun</au><au>Feng, Dazheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-complexity Adaptive Beamforming Algorithm with High Dimensional and Small Samples</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-07-15</date><risdate>2023</risdate><volume>23</volume><issue>14</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>A large-scale array (LSA) inevitably encounter scenarios with a small number of samples, and its beamformer suffers from high computational complexity. High computational complexity prevents the system from being used in practical online engineering applications. The complex vector of the beamformer weights can be expressed as the product of training snapshots and the signal steering vector, and a coefficient vector, since the optimal weight vector is a linear combination of basis vectors of the signal-plus-interference subspace. In this study, a new adaptive beamformer is developed on the basis of the minimum variance distortionless response (MVDR) criterion and kernel techniques. The new beamformer only needs to compute the inversion of a low-dimensional Gram matrix instead of the high-dimensional sample covariance matrix, which significantly reduces the calculation cost. Moreover, an efficient loading parameter calculation method (only related to the received matrix and not required user-defined parameters) is derived, which can adaptively suppress the mismatches of the ill-conditioned Gram matrix. Furthermore, a fast version of the new beamformer is formulated for the LSA under the scanning mode. Simulation results demonstrate that the new beamformer achieves better performance and a lower computation load than existing algorithms for a small number of samples. Especially, insufficient samples and high computational complexity problems are more frequently aroused in the space-time broadband array signal processing. Interestingly, the new techniques can be successfully extended to wideband array signal processing and yield satisfactory beam pattern shapes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2023.3250265</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3495-3777</orcidid><orcidid>https://orcid.org/0000-0002-0168-8340</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-07, Vol.23 (14), p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2023_3250265
source IEEE Electronic Library (IEL)
subjects Adaptive algorithms
Array signal processing
Arrays
Beamforming
Broadband
Complexity
Costs
Covariance matrices
Covariance matrix
Gram matrix
Interference
Large-scale array
Mathematical analysis
Parameters
sample covariance matrix
scanning mode
Sensor arrays
Sensors
Shrinkage technique
Signal processing
Signal processing algorithms
small samples case
Steering
Vectors (mathematics)
wideband beamforming
title Low-complexity Adaptive Beamforming Algorithm with High Dimensional and Small Samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T12%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-complexity%20Adaptive%20Beamforming%20Algorithm%20with%20High%20Dimensional%20and%20Small%20Samples&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhang,%20Xuejun&rft.date=2023-07-15&rft.volume=23&rft.issue=14&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2023.3250265&rft_dat=%3Cproquest_RIE%3E2837138505%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2837138505&rft_id=info:pmid/&rft_ieee_id=10083005&rfr_iscdi=true