A Robust Foot-mounted Positioning System Based on Dual IMU Data and Ultrasonic Ranging

Foot-mounted positioning system (FPS) is regarded as an important application for GPS-denied scenes, including but not limited to emergency rescue, medical health, and individual soldier positioning. With the assistance of zero velocity update (ZUPT), the basic positioning function can be realized,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-02, Vol.23 (4), p.1-1
Hauptverfasser: Qi, Lin, Yu, Yue, Liu, Yu, Gao, Chuanshun, Feng, Tao, Hui, Jiawei, Wang, Sen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 4
container_start_page 1
container_title IEEE sensors journal
container_volume 23
creator Qi, Lin
Yu, Yue
Liu, Yu
Gao, Chuanshun
Feng, Tao
Hui, Jiawei
Wang, Sen
description Foot-mounted positioning system (FPS) is regarded as an important application for GPS-denied scenes, including but not limited to emergency rescue, medical health, and individual soldier positioning. With the assistance of zero velocity update (ZUPT), the basic positioning function can be realized, while the largest problem is that the accumulation of systematic heading drift and positioning error cannot be completely constrained. This paper presents a robust foot-mounted positioning system based on dual inertial measurement unit data and ultrasonic ranging (FPS-DU). Bi-directional Long Short-Term Memory (Bi-LSTM) network is developed for the recognition of quasi-static period for the performance enhancement of ZUPT, and multi-level constraints are modeled for decreasing the cumulative error of the single foot-mounted model. In addition, a unified Kalman-based location estimator is developed combing dual foot-mounted inertial data and sphere constraint-based ultrasonic ranging results, enhanced by a robust ultrasonic outlier detector. Comprehensive experiments demonstrate that the proposed FPS-DU realizes much more accurate and robust positioning accuracy (between 0.371% to 0.548% under different test environments and traveled distances) compared with traditional single FPSs.
doi_str_mv 10.1109/JSEN.2022.3232613
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2022_3232613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10015641</ieee_id><sourcerecordid>2776794832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-6353dee726637aef832a73814c322db604b80b378d2d8ff1db0df761757f89b93</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwAUgsLLFO8SOxnWXpA4rKQy1F7CwndqpUbdzazqJ_j6N2wWpGmnNnRgeAe4wGGKP86W05-RgQRMiAEkoYphegh7NMJJin4rLrKUpSyn-vwY33G4RwzjPeAz9DuLBF6wOcWhuSnW2bYDT8sr4OtW3qZg2XRx_MDj4rHwe2geNWbeHsfQXHKiioGg1X2-CUj3QJF6pZx9AtuKrU1pu7c-2D1XTyPXpN5p8vs9FwnpQkT0PCaEa1MZwwRrkylaBEcSpwWlJCdMFQWghUUC400aKqsC6QrjjD8fVK5EVO--DxtHfv7KE1PsiNbV0TT0rCOeN5GldGCp-o0lnvnank3tU75Y4SI9npk50-2emTZ30x83DK1MaYfzzCGUsx_QNBLWpv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776794832</pqid></control><display><type>article</type><title>A Robust Foot-mounted Positioning System Based on Dual IMU Data and Ultrasonic Ranging</title><source>IEEE Electronic Library (IEL)</source><creator>Qi, Lin ; Yu, Yue ; Liu, Yu ; Gao, Chuanshun ; Feng, Tao ; Hui, Jiawei ; Wang, Sen</creator><creatorcontrib>Qi, Lin ; Yu, Yue ; Liu, Yu ; Gao, Chuanshun ; Feng, Tao ; Hui, Jiawei ; Wang, Sen</creatorcontrib><description>Foot-mounted positioning system (FPS) is regarded as an important application for GPS-denied scenes, including but not limited to emergency rescue, medical health, and individual soldier positioning. With the assistance of zero velocity update (ZUPT), the basic positioning function can be realized, while the largest problem is that the accumulation of systematic heading drift and positioning error cannot be completely constrained. This paper presents a robust foot-mounted positioning system based on dual inertial measurement unit data and ultrasonic ranging (FPS-DU). Bi-directional Long Short-Term Memory (Bi-LSTM) network is developed for the recognition of quasi-static period for the performance enhancement of ZUPT, and multi-level constraints are modeled for decreasing the cumulative error of the single foot-mounted model. In addition, a unified Kalman-based location estimator is developed combing dual foot-mounted inertial data and sphere constraint-based ultrasonic ranging results, enhanced by a robust ultrasonic outlier detector. Comprehensive experiments demonstrate that the proposed FPS-DU realizes much more accurate and robust positioning accuracy (between 0.371% to 0.548% under different test environments and traveled distances) compared with traditional single FPSs.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3232613</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acoustics ; Bi-LSTM ; Constraint modelling ; Distance measurement ; dual inertial sensors ; Emergency medical services ; Feature extraction ; Foot-mounted positioning system ; Gyroscopes ; Hidden Markov models ; Inertial platforms ; Outliers (statistics) ; Rescue operations ; Robustness ; Sensors ; Training ; ultrasonic ranging ; Ultrasonic testing ; ZUPT</subject><ispartof>IEEE sensors journal, 2023-02, Vol.23 (4), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-6353dee726637aef832a73814c322db604b80b378d2d8ff1db0df761757f89b93</citedby><cites>FETCH-LOGICAL-c294t-6353dee726637aef832a73814c322db604b80b378d2d8ff1db0df761757f89b93</cites><orcidid>0000-0001-6929-1481 ; 0000-0003-3529-585X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10015641$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10015641$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qi, Lin</creatorcontrib><creatorcontrib>Yu, Yue</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Gao, Chuanshun</creatorcontrib><creatorcontrib>Feng, Tao</creatorcontrib><creatorcontrib>Hui, Jiawei</creatorcontrib><creatorcontrib>Wang, Sen</creatorcontrib><title>A Robust Foot-mounted Positioning System Based on Dual IMU Data and Ultrasonic Ranging</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Foot-mounted positioning system (FPS) is regarded as an important application for GPS-denied scenes, including but not limited to emergency rescue, medical health, and individual soldier positioning. With the assistance of zero velocity update (ZUPT), the basic positioning function can be realized, while the largest problem is that the accumulation of systematic heading drift and positioning error cannot be completely constrained. This paper presents a robust foot-mounted positioning system based on dual inertial measurement unit data and ultrasonic ranging (FPS-DU). Bi-directional Long Short-Term Memory (Bi-LSTM) network is developed for the recognition of quasi-static period for the performance enhancement of ZUPT, and multi-level constraints are modeled for decreasing the cumulative error of the single foot-mounted model. In addition, a unified Kalman-based location estimator is developed combing dual foot-mounted inertial data and sphere constraint-based ultrasonic ranging results, enhanced by a robust ultrasonic outlier detector. Comprehensive experiments demonstrate that the proposed FPS-DU realizes much more accurate and robust positioning accuracy (between 0.371% to 0.548% under different test environments and traveled distances) compared with traditional single FPSs.</description><subject>Acoustics</subject><subject>Bi-LSTM</subject><subject>Constraint modelling</subject><subject>Distance measurement</subject><subject>dual inertial sensors</subject><subject>Emergency medical services</subject><subject>Feature extraction</subject><subject>Foot-mounted positioning system</subject><subject>Gyroscopes</subject><subject>Hidden Markov models</subject><subject>Inertial platforms</subject><subject>Outliers (statistics)</subject><subject>Rescue operations</subject><subject>Robustness</subject><subject>Sensors</subject><subject>Training</subject><subject>ultrasonic ranging</subject><subject>Ultrasonic testing</subject><subject>ZUPT</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOwzAQRS0EEqXwAUgsLLFO8SOxnWXpA4rKQy1F7CwndqpUbdzazqJ_j6N2wWpGmnNnRgeAe4wGGKP86W05-RgQRMiAEkoYphegh7NMJJin4rLrKUpSyn-vwY33G4RwzjPeAz9DuLBF6wOcWhuSnW2bYDT8sr4OtW3qZg2XRx_MDj4rHwe2geNWbeHsfQXHKiioGg1X2-CUj3QJF6pZx9AtuKrU1pu7c-2D1XTyPXpN5p8vs9FwnpQkT0PCaEa1MZwwRrkylaBEcSpwWlJCdMFQWghUUC400aKqsC6QrjjD8fVK5EVO--DxtHfv7KE1PsiNbV0TT0rCOeN5GldGCp-o0lnvnank3tU75Y4SI9npk50-2emTZ30x83DK1MaYfzzCGUsx_QNBLWpv</recordid><startdate>20230215</startdate><enddate>20230215</enddate><creator>Qi, Lin</creator><creator>Yu, Yue</creator><creator>Liu, Yu</creator><creator>Gao, Chuanshun</creator><creator>Feng, Tao</creator><creator>Hui, Jiawei</creator><creator>Wang, Sen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6929-1481</orcidid><orcidid>https://orcid.org/0000-0003-3529-585X</orcidid></search><sort><creationdate>20230215</creationdate><title>A Robust Foot-mounted Positioning System Based on Dual IMU Data and Ultrasonic Ranging</title><author>Qi, Lin ; Yu, Yue ; Liu, Yu ; Gao, Chuanshun ; Feng, Tao ; Hui, Jiawei ; Wang, Sen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-6353dee726637aef832a73814c322db604b80b378d2d8ff1db0df761757f89b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustics</topic><topic>Bi-LSTM</topic><topic>Constraint modelling</topic><topic>Distance measurement</topic><topic>dual inertial sensors</topic><topic>Emergency medical services</topic><topic>Feature extraction</topic><topic>Foot-mounted positioning system</topic><topic>Gyroscopes</topic><topic>Hidden Markov models</topic><topic>Inertial platforms</topic><topic>Outliers (statistics)</topic><topic>Rescue operations</topic><topic>Robustness</topic><topic>Sensors</topic><topic>Training</topic><topic>ultrasonic ranging</topic><topic>Ultrasonic testing</topic><topic>ZUPT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Lin</creatorcontrib><creatorcontrib>Yu, Yue</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Gao, Chuanshun</creatorcontrib><creatorcontrib>Feng, Tao</creatorcontrib><creatorcontrib>Hui, Jiawei</creatorcontrib><creatorcontrib>Wang, Sen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qi, Lin</au><au>Yu, Yue</au><au>Liu, Yu</au><au>Gao, Chuanshun</au><au>Feng, Tao</au><au>Hui, Jiawei</au><au>Wang, Sen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robust Foot-mounted Positioning System Based on Dual IMU Data and Ultrasonic Ranging</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-02-15</date><risdate>2023</risdate><volume>23</volume><issue>4</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Foot-mounted positioning system (FPS) is regarded as an important application for GPS-denied scenes, including but not limited to emergency rescue, medical health, and individual soldier positioning. With the assistance of zero velocity update (ZUPT), the basic positioning function can be realized, while the largest problem is that the accumulation of systematic heading drift and positioning error cannot be completely constrained. This paper presents a robust foot-mounted positioning system based on dual inertial measurement unit data and ultrasonic ranging (FPS-DU). Bi-directional Long Short-Term Memory (Bi-LSTM) network is developed for the recognition of quasi-static period for the performance enhancement of ZUPT, and multi-level constraints are modeled for decreasing the cumulative error of the single foot-mounted model. In addition, a unified Kalman-based location estimator is developed combing dual foot-mounted inertial data and sphere constraint-based ultrasonic ranging results, enhanced by a robust ultrasonic outlier detector. Comprehensive experiments demonstrate that the proposed FPS-DU realizes much more accurate and robust positioning accuracy (between 0.371% to 0.548% under different test environments and traveled distances) compared with traditional single FPSs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3232613</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6929-1481</orcidid><orcidid>https://orcid.org/0000-0003-3529-585X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-02, Vol.23 (4), p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2022_3232613
source IEEE Electronic Library (IEL)
subjects Acoustics
Bi-LSTM
Constraint modelling
Distance measurement
dual inertial sensors
Emergency medical services
Feature extraction
Foot-mounted positioning system
Gyroscopes
Hidden Markov models
Inertial platforms
Outliers (statistics)
Rescue operations
Robustness
Sensors
Training
ultrasonic ranging
Ultrasonic testing
ZUPT
title A Robust Foot-mounted Positioning System Based on Dual IMU Data and Ultrasonic Ranging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robust%20Foot-mounted%20Positioning%20System%20Based%20on%20Dual%20IMU%20Data%20and%20Ultrasonic%20Ranging&rft.jtitle=IEEE%20sensors%20journal&rft.au=Qi,%20Lin&rft.date=2023-02-15&rft.volume=23&rft.issue=4&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3232613&rft_dat=%3Cproquest_RIE%3E2776794832%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776794832&rft_id=info:pmid/&rft_ieee_id=10015641&rfr_iscdi=true