Enhanced EKF-based Time Calibration for GNSS/UWB Tight Integration
Tight integration of low-cost Ultra-Wide Band (UWB) ranging sensors with mass-market Global Navigation Satellite System (GNSS) receivers is gaining attention as a high-accuracy positioning strategy for consumer applications dealing with challenging environments. However, due to independent clocks em...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2023-01, Vol.23 (1), p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE sensors journal |
container_volume | 23 |
creator | Guo, Yihan Vouch, Oliviero Zocca, Simone Minetto, Alex Dovis, Fabio |
description | Tight integration of low-cost Ultra-Wide Band (UWB) ranging sensors with mass-market Global Navigation Satellite System (GNSS) receivers is gaining attention as a high-accuracy positioning strategy for consumer applications dealing with challenging environments. However, due to independent clocks embedded in Commercial-Off-The-Shelf (COTS) chipsets, the time scales associated with sensor measurements are misaligned, leading to inconsistent data fusion. Centralized, recursive filtering architectures can compensate for this offset and achieve accurate state estimation. In line with this, a GNSS/UWB tight integration scheme based on an Extended Kalman Filter (EKF) is developed that performs online time calibration of the sensors' measurements by recursively modeling the GNSS/UWB time-offset as an additional unknown in the system state-space model. Furthermore, a double-update filtering model is proposed that embeds optimizations for the adaptive weighting of UWB measurements. Simulation results show that the double-update EKF algorithm can achieve a horizontal positioning accuracy gain of 41.60% over a plain EKF integration with uncalibrated time-offset and of 15.43% over the EKF with naive time-offset calibration. Moreover, a real-world experimental assessment demonstrates improved Root-Mean-Square Error (RMSE) performance of 57.58% and 31.03%, respectively. |
doi_str_mv | 10.1109/JSEN.2022.3223974 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2022_3223974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9966513</ieee_id><sourcerecordid>2759388323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-fa1ca0f148df697026faa065c9ca6016be5bc33a8c9ba851864a805d74b7398f3</originalsourceid><addsrcrecordid>eNo9kMtOwkAUhidGExF9AOOmievCXDq3pZCCKMEFEN1NTocZKIEWp2XB29umxNX5k_9ykg-hZ4IHhGA9_FimiwHFlA4YpUzL5Ab1COcqJjJRt61mOE6Y_LlHD1W1x5hoyWUPjdJiB4V1myj9nMQZVI1a5UcXjeGQZwHqvCwiX4Zoulguh-vvUeNud3U0K2q37exHdOfhULmn6-2j9SRdjd_j-dd0Nn6bx5YKUcceiAXsSaI2XmiJqfAAWHCrLQhMROZ4ZhkDZXUGihMlElCYb2SSSaaVZ3302u2eQvl7dlVt9uU5FM1LQyXXTClGWZMiXcqGsqqC8-YU8iOEiyHYtKhMi8q0qMwVVdN56Tq5c-4_r7UQnDD2BxoIYv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759388323</pqid></control><display><type>article</type><title>Enhanced EKF-based Time Calibration for GNSS/UWB Tight Integration</title><source>IEEE Electronic Library (IEL)</source><creator>Guo, Yihan ; Vouch, Oliviero ; Zocca, Simone ; Minetto, Alex ; Dovis, Fabio</creator><creatorcontrib>Guo, Yihan ; Vouch, Oliviero ; Zocca, Simone ; Minetto, Alex ; Dovis, Fabio</creatorcontrib><description>Tight integration of low-cost Ultra-Wide Band (UWB) ranging sensors with mass-market Global Navigation Satellite System (GNSS) receivers is gaining attention as a high-accuracy positioning strategy for consumer applications dealing with challenging environments. However, due to independent clocks embedded in Commercial-Off-The-Shelf (COTS) chipsets, the time scales associated with sensor measurements are misaligned, leading to inconsistent data fusion. Centralized, recursive filtering architectures can compensate for this offset and achieve accurate state estimation. In line with this, a GNSS/UWB tight integration scheme based on an Extended Kalman Filter (EKF) is developed that performs online time calibration of the sensors' measurements by recursively modeling the GNSS/UWB time-offset as an additional unknown in the system state-space model. Furthermore, a double-update filtering model is proposed that embeds optimizations for the adaptive weighting of UWB measurements. Simulation results show that the double-update EKF algorithm can achieve a horizontal positioning accuracy gain of 41.60% over a plain EKF integration with uncalibrated time-offset and of 15.43% over the EKF with naive time-offset calibration. Moreover, a real-world experimental assessment demonstrates improved Root-Mean-Square Error (RMSE) performance of 57.58% and 31.03%, respectively.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3223974</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Calibration ; Chips (electronics) ; Clocks ; Data integration ; Extended Kalman filter ; Extended Kalman Filter (EKF) ; Global navigation satellite system ; Global Navigation Satellite System (GNSS) ; Multisensor fusion ; Root-mean-square errors ; Sensors ; State estimation ; State space models ; tight integration ; time calibration ; Ultra-Wide Band (UWB) ; Ultrawideband</subject><ispartof>IEEE sensors journal, 2023-01, Vol.23 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-fa1ca0f148df697026faa065c9ca6016be5bc33a8c9ba851864a805d74b7398f3</citedby><cites>FETCH-LOGICAL-c266t-fa1ca0f148df697026faa065c9ca6016be5bc33a8c9ba851864a805d74b7398f3</cites><orcidid>0000-0002-6379-8887 ; 0000-0002-0586-7151 ; 0000-0001-6078-9099 ; 0000-0002-2291-2858 ; 0000-0003-4337-673X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9966513$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Guo, Yihan</creatorcontrib><creatorcontrib>Vouch, Oliviero</creatorcontrib><creatorcontrib>Zocca, Simone</creatorcontrib><creatorcontrib>Minetto, Alex</creatorcontrib><creatorcontrib>Dovis, Fabio</creatorcontrib><title>Enhanced EKF-based Time Calibration for GNSS/UWB Tight Integration</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Tight integration of low-cost Ultra-Wide Band (UWB) ranging sensors with mass-market Global Navigation Satellite System (GNSS) receivers is gaining attention as a high-accuracy positioning strategy for consumer applications dealing with challenging environments. However, due to independent clocks embedded in Commercial-Off-The-Shelf (COTS) chipsets, the time scales associated with sensor measurements are misaligned, leading to inconsistent data fusion. Centralized, recursive filtering architectures can compensate for this offset and achieve accurate state estimation. In line with this, a GNSS/UWB tight integration scheme based on an Extended Kalman Filter (EKF) is developed that performs online time calibration of the sensors' measurements by recursively modeling the GNSS/UWB time-offset as an additional unknown in the system state-space model. Furthermore, a double-update filtering model is proposed that embeds optimizations for the adaptive weighting of UWB measurements. Simulation results show that the double-update EKF algorithm can achieve a horizontal positioning accuracy gain of 41.60% over a plain EKF integration with uncalibrated time-offset and of 15.43% over the EKF with naive time-offset calibration. Moreover, a real-world experimental assessment demonstrates improved Root-Mean-Square Error (RMSE) performance of 57.58% and 31.03%, respectively.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Calibration</subject><subject>Chips (electronics)</subject><subject>Clocks</subject><subject>Data integration</subject><subject>Extended Kalman filter</subject><subject>Extended Kalman Filter (EKF)</subject><subject>Global navigation satellite system</subject><subject>Global Navigation Satellite System (GNSS)</subject><subject>Multisensor fusion</subject><subject>Root-mean-square errors</subject><subject>Sensors</subject><subject>State estimation</subject><subject>State space models</subject><subject>tight integration</subject><subject>time calibration</subject><subject>Ultra-Wide Band (UWB)</subject><subject>Ultrawideband</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwkAUhidGExF9AOOmievCXDq3pZCCKMEFEN1NTocZKIEWp2XB29umxNX5k_9ykg-hZ4IHhGA9_FimiwHFlA4YpUzL5Ab1COcqJjJRt61mOE6Y_LlHD1W1x5hoyWUPjdJiB4V1myj9nMQZVI1a5UcXjeGQZwHqvCwiX4Zoulguh-vvUeNud3U0K2q37exHdOfhULmn6-2j9SRdjd_j-dd0Nn6bx5YKUcceiAXsSaI2XmiJqfAAWHCrLQhMROZ4ZhkDZXUGihMlElCYb2SSSaaVZ3302u2eQvl7dlVt9uU5FM1LQyXXTClGWZMiXcqGsqqC8-YU8iOEiyHYtKhMi8q0qMwVVdN56Tq5c-4_r7UQnDD2BxoIYv8</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Guo, Yihan</creator><creator>Vouch, Oliviero</creator><creator>Zocca, Simone</creator><creator>Minetto, Alex</creator><creator>Dovis, Fabio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6379-8887</orcidid><orcidid>https://orcid.org/0000-0002-0586-7151</orcidid><orcidid>https://orcid.org/0000-0001-6078-9099</orcidid><orcidid>https://orcid.org/0000-0002-2291-2858</orcidid><orcidid>https://orcid.org/0000-0003-4337-673X</orcidid></search><sort><creationdate>20230101</creationdate><title>Enhanced EKF-based Time Calibration for GNSS/UWB Tight Integration</title><author>Guo, Yihan ; Vouch, Oliviero ; Zocca, Simone ; Minetto, Alex ; Dovis, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-fa1ca0f148df697026faa065c9ca6016be5bc33a8c9ba851864a805d74b7398f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Calibration</topic><topic>Chips (electronics)</topic><topic>Clocks</topic><topic>Data integration</topic><topic>Extended Kalman filter</topic><topic>Extended Kalman Filter (EKF)</topic><topic>Global navigation satellite system</topic><topic>Global Navigation Satellite System (GNSS)</topic><topic>Multisensor fusion</topic><topic>Root-mean-square errors</topic><topic>Sensors</topic><topic>State estimation</topic><topic>State space models</topic><topic>tight integration</topic><topic>time calibration</topic><topic>Ultra-Wide Band (UWB)</topic><topic>Ultrawideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yihan</creatorcontrib><creatorcontrib>Vouch, Oliviero</creatorcontrib><creatorcontrib>Zocca, Simone</creatorcontrib><creatorcontrib>Minetto, Alex</creatorcontrib><creatorcontrib>Dovis, Fabio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yihan</au><au>Vouch, Oliviero</au><au>Zocca, Simone</au><au>Minetto, Alex</au><au>Dovis, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced EKF-based Time Calibration for GNSS/UWB Tight Integration</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>23</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Tight integration of low-cost Ultra-Wide Band (UWB) ranging sensors with mass-market Global Navigation Satellite System (GNSS) receivers is gaining attention as a high-accuracy positioning strategy for consumer applications dealing with challenging environments. However, due to independent clocks embedded in Commercial-Off-The-Shelf (COTS) chipsets, the time scales associated with sensor measurements are misaligned, leading to inconsistent data fusion. Centralized, recursive filtering architectures can compensate for this offset and achieve accurate state estimation. In line with this, a GNSS/UWB tight integration scheme based on an Extended Kalman Filter (EKF) is developed that performs online time calibration of the sensors' measurements by recursively modeling the GNSS/UWB time-offset as an additional unknown in the system state-space model. Furthermore, a double-update filtering model is proposed that embeds optimizations for the adaptive weighting of UWB measurements. Simulation results show that the double-update EKF algorithm can achieve a horizontal positioning accuracy gain of 41.60% over a plain EKF integration with uncalibrated time-offset and of 15.43% over the EKF with naive time-offset calibration. Moreover, a real-world experimental assessment demonstrates improved Root-Mean-Square Error (RMSE) performance of 57.58% and 31.03%, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3223974</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6379-8887</orcidid><orcidid>https://orcid.org/0000-0002-0586-7151</orcidid><orcidid>https://orcid.org/0000-0001-6078-9099</orcidid><orcidid>https://orcid.org/0000-0002-2291-2858</orcidid><orcidid>https://orcid.org/0000-0003-4337-673X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2023-01, Vol.23 (1), p.1-1 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2022_3223974 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Algorithms Calibration Chips (electronics) Clocks Data integration Extended Kalman filter Extended Kalman Filter (EKF) Global navigation satellite system Global Navigation Satellite System (GNSS) Multisensor fusion Root-mean-square errors Sensors State estimation State space models tight integration time calibration Ultra-Wide Band (UWB) Ultrawideband |
title | Enhanced EKF-based Time Calibration for GNSS/UWB Tight Integration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A11%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20EKF-based%20Time%20Calibration%20for%20GNSS/UWB%20Tight%20Integration&rft.jtitle=IEEE%20sensors%20journal&rft.au=Guo,%20Yihan&rft.date=2023-01-01&rft.volume=23&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3223974&rft_dat=%3Cproquest_cross%3E2759388323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759388323&rft_id=info:pmid/&rft_ieee_id=9966513&rfr_iscdi=true |