Enhanced EKF-based Time Calibration for GNSS/UWB Tight Integration

Tight integration of low-cost Ultra-Wide Band (UWB) ranging sensors with mass-market Global Navigation Satellite System (GNSS) receivers is gaining attention as a high-accuracy positioning strategy for consumer applications dealing with challenging environments. However, due to independent clocks em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2023-01, Vol.23 (1), p.1-1
Hauptverfasser: Guo, Yihan, Vouch, Oliviero, Zocca, Simone, Minetto, Alex, Dovis, Fabio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 1
container_start_page 1
container_title IEEE sensors journal
container_volume 23
creator Guo, Yihan
Vouch, Oliviero
Zocca, Simone
Minetto, Alex
Dovis, Fabio
description Tight integration of low-cost Ultra-Wide Band (UWB) ranging sensors with mass-market Global Navigation Satellite System (GNSS) receivers is gaining attention as a high-accuracy positioning strategy for consumer applications dealing with challenging environments. However, due to independent clocks embedded in Commercial-Off-The-Shelf (COTS) chipsets, the time scales associated with sensor measurements are misaligned, leading to inconsistent data fusion. Centralized, recursive filtering architectures can compensate for this offset and achieve accurate state estimation. In line with this, a GNSS/UWB tight integration scheme based on an Extended Kalman Filter (EKF) is developed that performs online time calibration of the sensors' measurements by recursively modeling the GNSS/UWB time-offset as an additional unknown in the system state-space model. Furthermore, a double-update filtering model is proposed that embeds optimizations for the adaptive weighting of UWB measurements. Simulation results show that the double-update EKF algorithm can achieve a horizontal positioning accuracy gain of 41.60% over a plain EKF integration with uncalibrated time-offset and of 15.43% over the EKF with naive time-offset calibration. Moreover, a real-world experimental assessment demonstrates improved Root-Mean-Square Error (RMSE) performance of 57.58% and 31.03%, respectively.
doi_str_mv 10.1109/JSEN.2022.3223974
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2022_3223974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9966513</ieee_id><sourcerecordid>2759388323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-fa1ca0f148df697026faa065c9ca6016be5bc33a8c9ba851864a805d74b7398f3</originalsourceid><addsrcrecordid>eNo9kMtOwkAUhidGExF9AOOmievCXDq3pZCCKMEFEN1NTocZKIEWp2XB29umxNX5k_9ykg-hZ4IHhGA9_FimiwHFlA4YpUzL5Ab1COcqJjJRt61mOE6Y_LlHD1W1x5hoyWUPjdJiB4V1myj9nMQZVI1a5UcXjeGQZwHqvCwiX4Zoulguh-vvUeNud3U0K2q37exHdOfhULmn6-2j9SRdjd_j-dd0Nn6bx5YKUcceiAXsSaI2XmiJqfAAWHCrLQhMROZ4ZhkDZXUGihMlElCYb2SSSaaVZ3302u2eQvl7dlVt9uU5FM1LQyXXTClGWZMiXcqGsqqC8-YU8iOEiyHYtKhMi8q0qMwVVdN56Tq5c-4_r7UQnDD2BxoIYv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759388323</pqid></control><display><type>article</type><title>Enhanced EKF-based Time Calibration for GNSS/UWB Tight Integration</title><source>IEEE Electronic Library (IEL)</source><creator>Guo, Yihan ; Vouch, Oliviero ; Zocca, Simone ; Minetto, Alex ; Dovis, Fabio</creator><creatorcontrib>Guo, Yihan ; Vouch, Oliviero ; Zocca, Simone ; Minetto, Alex ; Dovis, Fabio</creatorcontrib><description>Tight integration of low-cost Ultra-Wide Band (UWB) ranging sensors with mass-market Global Navigation Satellite System (GNSS) receivers is gaining attention as a high-accuracy positioning strategy for consumer applications dealing with challenging environments. However, due to independent clocks embedded in Commercial-Off-The-Shelf (COTS) chipsets, the time scales associated with sensor measurements are misaligned, leading to inconsistent data fusion. Centralized, recursive filtering architectures can compensate for this offset and achieve accurate state estimation. In line with this, a GNSS/UWB tight integration scheme based on an Extended Kalman Filter (EKF) is developed that performs online time calibration of the sensors' measurements by recursively modeling the GNSS/UWB time-offset as an additional unknown in the system state-space model. Furthermore, a double-update filtering model is proposed that embeds optimizations for the adaptive weighting of UWB measurements. Simulation results show that the double-update EKF algorithm can achieve a horizontal positioning accuracy gain of 41.60% over a plain EKF integration with uncalibrated time-offset and of 15.43% over the EKF with naive time-offset calibration. Moreover, a real-world experimental assessment demonstrates improved Root-Mean-Square Error (RMSE) performance of 57.58% and 31.03%, respectively.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3223974</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Calibration ; Chips (electronics) ; Clocks ; Data integration ; Extended Kalman filter ; Extended Kalman Filter (EKF) ; Global navigation satellite system ; Global Navigation Satellite System (GNSS) ; Multisensor fusion ; Root-mean-square errors ; Sensors ; State estimation ; State space models ; tight integration ; time calibration ; Ultra-Wide Band (UWB) ; Ultrawideband</subject><ispartof>IEEE sensors journal, 2023-01, Vol.23 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-fa1ca0f148df697026faa065c9ca6016be5bc33a8c9ba851864a805d74b7398f3</citedby><cites>FETCH-LOGICAL-c266t-fa1ca0f148df697026faa065c9ca6016be5bc33a8c9ba851864a805d74b7398f3</cites><orcidid>0000-0002-6379-8887 ; 0000-0002-0586-7151 ; 0000-0001-6078-9099 ; 0000-0002-2291-2858 ; 0000-0003-4337-673X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9966513$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Guo, Yihan</creatorcontrib><creatorcontrib>Vouch, Oliviero</creatorcontrib><creatorcontrib>Zocca, Simone</creatorcontrib><creatorcontrib>Minetto, Alex</creatorcontrib><creatorcontrib>Dovis, Fabio</creatorcontrib><title>Enhanced EKF-based Time Calibration for GNSS/UWB Tight Integration</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Tight integration of low-cost Ultra-Wide Band (UWB) ranging sensors with mass-market Global Navigation Satellite System (GNSS) receivers is gaining attention as a high-accuracy positioning strategy for consumer applications dealing with challenging environments. However, due to independent clocks embedded in Commercial-Off-The-Shelf (COTS) chipsets, the time scales associated with sensor measurements are misaligned, leading to inconsistent data fusion. Centralized, recursive filtering architectures can compensate for this offset and achieve accurate state estimation. In line with this, a GNSS/UWB tight integration scheme based on an Extended Kalman Filter (EKF) is developed that performs online time calibration of the sensors' measurements by recursively modeling the GNSS/UWB time-offset as an additional unknown in the system state-space model. Furthermore, a double-update filtering model is proposed that embeds optimizations for the adaptive weighting of UWB measurements. Simulation results show that the double-update EKF algorithm can achieve a horizontal positioning accuracy gain of 41.60% over a plain EKF integration with uncalibrated time-offset and of 15.43% over the EKF with naive time-offset calibration. Moreover, a real-world experimental assessment demonstrates improved Root-Mean-Square Error (RMSE) performance of 57.58% and 31.03%, respectively.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Calibration</subject><subject>Chips (electronics)</subject><subject>Clocks</subject><subject>Data integration</subject><subject>Extended Kalman filter</subject><subject>Extended Kalman Filter (EKF)</subject><subject>Global navigation satellite system</subject><subject>Global Navigation Satellite System (GNSS)</subject><subject>Multisensor fusion</subject><subject>Root-mean-square errors</subject><subject>Sensors</subject><subject>State estimation</subject><subject>State space models</subject><subject>tight integration</subject><subject>time calibration</subject><subject>Ultra-Wide Band (UWB)</subject><subject>Ultrawideband</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwkAUhidGExF9AOOmievCXDq3pZCCKMEFEN1NTocZKIEWp2XB29umxNX5k_9ykg-hZ4IHhGA9_FimiwHFlA4YpUzL5Ab1COcqJjJRt61mOE6Y_LlHD1W1x5hoyWUPjdJiB4V1myj9nMQZVI1a5UcXjeGQZwHqvCwiX4Zoulguh-vvUeNud3U0K2q37exHdOfhULmn6-2j9SRdjd_j-dd0Nn6bx5YKUcceiAXsSaI2XmiJqfAAWHCrLQhMROZ4ZhkDZXUGihMlElCYb2SSSaaVZ3302u2eQvl7dlVt9uU5FM1LQyXXTClGWZMiXcqGsqqC8-YU8iOEiyHYtKhMi8q0qMwVVdN56Tq5c-4_r7UQnDD2BxoIYv8</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Guo, Yihan</creator><creator>Vouch, Oliviero</creator><creator>Zocca, Simone</creator><creator>Minetto, Alex</creator><creator>Dovis, Fabio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6379-8887</orcidid><orcidid>https://orcid.org/0000-0002-0586-7151</orcidid><orcidid>https://orcid.org/0000-0001-6078-9099</orcidid><orcidid>https://orcid.org/0000-0002-2291-2858</orcidid><orcidid>https://orcid.org/0000-0003-4337-673X</orcidid></search><sort><creationdate>20230101</creationdate><title>Enhanced EKF-based Time Calibration for GNSS/UWB Tight Integration</title><author>Guo, Yihan ; Vouch, Oliviero ; Zocca, Simone ; Minetto, Alex ; Dovis, Fabio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-fa1ca0f148df697026faa065c9ca6016be5bc33a8c9ba851864a805d74b7398f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Calibration</topic><topic>Chips (electronics)</topic><topic>Clocks</topic><topic>Data integration</topic><topic>Extended Kalman filter</topic><topic>Extended Kalman Filter (EKF)</topic><topic>Global navigation satellite system</topic><topic>Global Navigation Satellite System (GNSS)</topic><topic>Multisensor fusion</topic><topic>Root-mean-square errors</topic><topic>Sensors</topic><topic>State estimation</topic><topic>State space models</topic><topic>tight integration</topic><topic>time calibration</topic><topic>Ultra-Wide Band (UWB)</topic><topic>Ultrawideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Yihan</creatorcontrib><creatorcontrib>Vouch, Oliviero</creatorcontrib><creatorcontrib>Zocca, Simone</creatorcontrib><creatorcontrib>Minetto, Alex</creatorcontrib><creatorcontrib>Dovis, Fabio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Yihan</au><au>Vouch, Oliviero</au><au>Zocca, Simone</au><au>Minetto, Alex</au><au>Dovis, Fabio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced EKF-based Time Calibration for GNSS/UWB Tight Integration</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>23</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Tight integration of low-cost Ultra-Wide Band (UWB) ranging sensors with mass-market Global Navigation Satellite System (GNSS) receivers is gaining attention as a high-accuracy positioning strategy for consumer applications dealing with challenging environments. However, due to independent clocks embedded in Commercial-Off-The-Shelf (COTS) chipsets, the time scales associated with sensor measurements are misaligned, leading to inconsistent data fusion. Centralized, recursive filtering architectures can compensate for this offset and achieve accurate state estimation. In line with this, a GNSS/UWB tight integration scheme based on an Extended Kalman Filter (EKF) is developed that performs online time calibration of the sensors' measurements by recursively modeling the GNSS/UWB time-offset as an additional unknown in the system state-space model. Furthermore, a double-update filtering model is proposed that embeds optimizations for the adaptive weighting of UWB measurements. Simulation results show that the double-update EKF algorithm can achieve a horizontal positioning accuracy gain of 41.60% over a plain EKF integration with uncalibrated time-offset and of 15.43% over the EKF with naive time-offset calibration. Moreover, a real-world experimental assessment demonstrates improved Root-Mean-Square Error (RMSE) performance of 57.58% and 31.03%, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3223974</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6379-8887</orcidid><orcidid>https://orcid.org/0000-0002-0586-7151</orcidid><orcidid>https://orcid.org/0000-0001-6078-9099</orcidid><orcidid>https://orcid.org/0000-0002-2291-2858</orcidid><orcidid>https://orcid.org/0000-0003-4337-673X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2023-01, Vol.23 (1), p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2022_3223974
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Calibration
Chips (electronics)
Clocks
Data integration
Extended Kalman filter
Extended Kalman Filter (EKF)
Global navigation satellite system
Global Navigation Satellite System (GNSS)
Multisensor fusion
Root-mean-square errors
Sensors
State estimation
State space models
tight integration
time calibration
Ultra-Wide Band (UWB)
Ultrawideband
title Enhanced EKF-based Time Calibration for GNSS/UWB Tight Integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A11%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20EKF-based%20Time%20Calibration%20for%20GNSS/UWB%20Tight%20Integration&rft.jtitle=IEEE%20sensors%20journal&rft.au=Guo,%20Yihan&rft.date=2023-01-01&rft.volume=23&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3223974&rft_dat=%3Cproquest_cross%3E2759388323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759388323&rft_id=info:pmid/&rft_ieee_id=9966513&rfr_iscdi=true