Downhole FT-MIR Spectrometer using Perfect Metasurface Absorber
Realization of "FT-IR on a chip" holds the potential of a disruptive technology for downhole chemical analysis within the oil & gas industry. One of the critical obstacles to downhole integration though has been the cooling requirements of conventional technologies. Here we report the...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2023-01, Vol.23 (1), p.1-1 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE sensors journal |
container_volume | 23 |
creator | Swett, Dwight W. |
description | Realization of "FT-IR on a chip" holds the potential of a disruptive technology for downhole chemical analysis within the oil & gas industry. One of the critical obstacles to downhole integration though has been the cooling requirements of conventional technologies. Here we report the design and numerical analysis of an uncooled miniaturized FT-MIR spectrometer compatible with downhole thermal environments, enabled by a broadband mid-infrared metasurface detector/source combination derived from a geometric inversion of a set of conformal mapping contours. The metasurface is numerically found to exhibit an NZIM behavior with absorption characterized by surface plasmon resonances confined to the ultrathin (λ/300) metasurface plane, making the absorption properties of the microbolometer design much less sensitive to the remaining support structure than in typical designs. This feature allows the metasurface to be integrated on a single VO 2 substrate operated at elevated downhole temperatures that coincide with the metal-insulator-transition region. Within this transition region the VO 2 material exhibits enhanced thermometric properties, enabling an uncooled microbolometer design with predicted maximum detectivity D* = 1.5×10 10 cm√Hz/W and noise equivalent difference temperature NEDT of 1 mK at a modulation frequency of 500 Hz. These parameters approach entry-level lab FT-MIR spectrometers and could represent a significant step in deploying mid-infrared spectroscopy into oilfield downhole logging applications. |
doi_str_mv | 10.1109/JSEN.2022.3223847 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2022_3223847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9966514</ieee_id><sourcerecordid>2759388171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-62d3132aa6a82ad3a81f4a6b9f697bcd52eebd1a0dbefd87fa5a0d652c5c43603</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7d2c1-5CRFW620KraCt2WTzGpL2627CeK_N6HF07wMzzsDDyGXQAcANL95mo-eB4wyNuCMcZ2pI9IDIXQKKtPHXeY0zbj6OCVnMa4ohVwJ1SO39_5n--XXmIwX6Wzylsx3WNbBb7DGkDRxuf1MXjG4dpnMsLaxCc6WmAyL6EOB4ZycOLuOeHGYffI-Hi3uHtPpy8PkbjhNSwa6TiWrOHBmrbSa2YpbDS6zssidzFVRVoIhFhVYWhXoKq2cFW2WgpWizLikvE-u93d3wX83GGuz8k3Yti8NUyLnWoOCloI9VQYfY0BndmG5seHXADWdJ9N5Mp0nc_DUdq72nSUi_vN5LqWAjP8BZAtj-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759388171</pqid></control><display><type>article</type><title>Downhole FT-MIR Spectrometer using Perfect Metasurface Absorber</title><source>IEEE Electronic Library (IEL)</source><creator>Swett, Dwight W.</creator><creatorcontrib>Swett, Dwight W.</creatorcontrib><description>Realization of "FT-IR on a chip" holds the potential of a disruptive technology for downhole chemical analysis within the oil & gas industry. One of the critical obstacles to downhole integration though has been the cooling requirements of conventional technologies. Here we report the design and numerical analysis of an uncooled miniaturized FT-MIR spectrometer compatible with downhole thermal environments, enabled by a broadband mid-infrared metasurface detector/source combination derived from a geometric inversion of a set of conformal mapping contours. The metasurface is numerically found to exhibit an NZIM behavior with absorption characterized by surface plasmon resonances confined to the ultrathin (λ/300) metasurface plane, making the absorption properties of the microbolometer design much less sensitive to the remaining support structure than in typical designs. This feature allows the metasurface to be integrated on a single VO 2 substrate operated at elevated downhole temperatures that coincide with the metal-insulator-transition region. Within this transition region the VO 2 material exhibits enhanced thermometric properties, enabling an uncooled microbolometer design with predicted maximum detectivity D* = 1.5×10 10 cm√Hz/W and noise equivalent difference temperature NEDT of 1 mK at a modulation frequency of 500 Hz. These parameters approach entry-level lab FT-MIR spectrometers and could represent a significant step in deploying mid-infrared spectroscopy into oilfield downhole logging applications.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3223847</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Absorption ; Broadband ; Chemical analysis ; Conformal mapping ; downhole logging ; Fourier transforms ; FT-MIR ; Infrared analysis ; Infrared spectra ; Infrared spectrometers ; Metal-insulator transition ; Metamaterials ; Metasurfaces ; Noise prediction ; Numerical analysis ; Oil fields ; perfect metasurface absorber ; Substrates ; Thermal environments ; Vanadium oxides</subject><ispartof>IEEE sensors journal, 2023-01, Vol.23 (1), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-62d3132aa6a82ad3a81f4a6b9f697bcd52eebd1a0dbefd87fa5a0d652c5c43603</cites><orcidid>0000-0003-0149-9301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9966514$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Swett, Dwight W.</creatorcontrib><title>Downhole FT-MIR Spectrometer using Perfect Metasurface Absorber</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Realization of "FT-IR on a chip" holds the potential of a disruptive technology for downhole chemical analysis within the oil & gas industry. One of the critical obstacles to downhole integration though has been the cooling requirements of conventional technologies. Here we report the design and numerical analysis of an uncooled miniaturized FT-MIR spectrometer compatible with downhole thermal environments, enabled by a broadband mid-infrared metasurface detector/source combination derived from a geometric inversion of a set of conformal mapping contours. The metasurface is numerically found to exhibit an NZIM behavior with absorption characterized by surface plasmon resonances confined to the ultrathin (λ/300) metasurface plane, making the absorption properties of the microbolometer design much less sensitive to the remaining support structure than in typical designs. This feature allows the metasurface to be integrated on a single VO 2 substrate operated at elevated downhole temperatures that coincide with the metal-insulator-transition region. Within this transition region the VO 2 material exhibits enhanced thermometric properties, enabling an uncooled microbolometer design with predicted maximum detectivity D* = 1.5×10 10 cm√Hz/W and noise equivalent difference temperature NEDT of 1 mK at a modulation frequency of 500 Hz. These parameters approach entry-level lab FT-MIR spectrometers and could represent a significant step in deploying mid-infrared spectroscopy into oilfield downhole logging applications.</description><subject>Absorption</subject><subject>Broadband</subject><subject>Chemical analysis</subject><subject>Conformal mapping</subject><subject>downhole logging</subject><subject>Fourier transforms</subject><subject>FT-MIR</subject><subject>Infrared analysis</subject><subject>Infrared spectra</subject><subject>Infrared spectrometers</subject><subject>Metal-insulator transition</subject><subject>Metamaterials</subject><subject>Metasurfaces</subject><subject>Noise prediction</subject><subject>Numerical analysis</subject><subject>Oil fields</subject><subject>perfect metasurface absorber</subject><subject>Substrates</subject><subject>Thermal environments</subject><subject>Vanadium oxides</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7d2c1-5CRFW620KraCt2WTzGpL2627CeK_N6HF07wMzzsDDyGXQAcANL95mo-eB4wyNuCMcZ2pI9IDIXQKKtPHXeY0zbj6OCVnMa4ohVwJ1SO39_5n--XXmIwX6Wzylsx3WNbBb7DGkDRxuf1MXjG4dpnMsLaxCc6WmAyL6EOB4ZycOLuOeHGYffI-Hi3uHtPpy8PkbjhNSwa6TiWrOHBmrbSa2YpbDS6zssidzFVRVoIhFhVYWhXoKq2cFW2WgpWizLikvE-u93d3wX83GGuz8k3Yti8NUyLnWoOCloI9VQYfY0BndmG5seHXADWdJ9N5Mp0nc_DUdq72nSUi_vN5LqWAjP8BZAtj-g</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Swett, Dwight W.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0149-9301</orcidid></search><sort><creationdate>20230101</creationdate><title>Downhole FT-MIR Spectrometer using Perfect Metasurface Absorber</title><author>Swett, Dwight W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-62d3132aa6a82ad3a81f4a6b9f697bcd52eebd1a0dbefd87fa5a0d652c5c43603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption</topic><topic>Broadband</topic><topic>Chemical analysis</topic><topic>Conformal mapping</topic><topic>downhole logging</topic><topic>Fourier transforms</topic><topic>FT-MIR</topic><topic>Infrared analysis</topic><topic>Infrared spectra</topic><topic>Infrared spectrometers</topic><topic>Metal-insulator transition</topic><topic>Metamaterials</topic><topic>Metasurfaces</topic><topic>Noise prediction</topic><topic>Numerical analysis</topic><topic>Oil fields</topic><topic>perfect metasurface absorber</topic><topic>Substrates</topic><topic>Thermal environments</topic><topic>Vanadium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swett, Dwight W.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swett, Dwight W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downhole FT-MIR Spectrometer using Perfect Metasurface Absorber</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>23</volume><issue>1</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Realization of "FT-IR on a chip" holds the potential of a disruptive technology for downhole chemical analysis within the oil & gas industry. One of the critical obstacles to downhole integration though has been the cooling requirements of conventional technologies. Here we report the design and numerical analysis of an uncooled miniaturized FT-MIR spectrometer compatible with downhole thermal environments, enabled by a broadband mid-infrared metasurface detector/source combination derived from a geometric inversion of a set of conformal mapping contours. The metasurface is numerically found to exhibit an NZIM behavior with absorption characterized by surface plasmon resonances confined to the ultrathin (λ/300) metasurface plane, making the absorption properties of the microbolometer design much less sensitive to the remaining support structure than in typical designs. This feature allows the metasurface to be integrated on a single VO 2 substrate operated at elevated downhole temperatures that coincide with the metal-insulator-transition region. Within this transition region the VO 2 material exhibits enhanced thermometric properties, enabling an uncooled microbolometer design with predicted maximum detectivity D* = 1.5×10 10 cm√Hz/W and noise equivalent difference temperature NEDT of 1 mK at a modulation frequency of 500 Hz. These parameters approach entry-level lab FT-MIR spectrometers and could represent a significant step in deploying mid-infrared spectroscopy into oilfield downhole logging applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3223847</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0149-9301</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2023-01, Vol.23 (1), p.1-1 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2022_3223847 |
source | IEEE Electronic Library (IEL) |
subjects | Absorption Broadband Chemical analysis Conformal mapping downhole logging Fourier transforms FT-MIR Infrared analysis Infrared spectra Infrared spectrometers Metal-insulator transition Metamaterials Metasurfaces Noise prediction Numerical analysis Oil fields perfect metasurface absorber Substrates Thermal environments Vanadium oxides |
title | Downhole FT-MIR Spectrometer using Perfect Metasurface Absorber |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T02%3A29%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downhole%20FT-MIR%20Spectrometer%20using%20Perfect%20Metasurface%20Absorber&rft.jtitle=IEEE%20sensors%20journal&rft.au=Swett,%20Dwight%20W.&rft.date=2023-01-01&rft.volume=23&rft.issue=1&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3223847&rft_dat=%3Cproquest_cross%3E2759388171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759388171&rft_id=info:pmid/&rft_ieee_id=9966514&rfr_iscdi=true |