Integrated Data Augmentation for Accelerometer Time Series in Behavior Recognition: Roles of Sampling, Balancing and Fourier Surrogates

The behavioral monitoring of farmed animals such as cattle is a fundamental element of precision farming in that it enables unobtrusive ongoing health monitoring. This application presents two ubiquitous challenges typical of sensing applications of internet-of-things: limited dataset size and datas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2022-12, Vol.22 (24), p.1-1
Hauptverfasser: Li, Chao, Minati, Ludovico, Tokgoz, Korkut Kaan, Fukawa, Masamoto, Bartels, Jim, Sihan, A, Takeda, Ken-ichi, Ito, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 24
container_start_page 1
container_title IEEE sensors journal
container_volume 22
creator Li, Chao
Minati, Ludovico
Tokgoz, Korkut Kaan
Fukawa, Masamoto
Bartels, Jim
Sihan, A
Takeda, Ken-ichi
Ito, Hiroyuki
description The behavioral monitoring of farmed animals such as cattle is a fundamental element of precision farming in that it enables unobtrusive ongoing health monitoring. This application presents two ubiquitous challenges typical of sensing applications of internet-of-things: limited dataset size and dataset imbalance. Recently, data augmentation has emerged as a way of addressing their negative influences on the training process without overburdening the data acquisition phase. However, there remains no consensus regarding which methods should be applied to time series and in what combination. Here, we present the first comprehensive analysis that synergistically combines multiple approaches. These approaches are benchmarked on a dataset of triaxial accelerometer time series, which were acquired from six freely roaming cows through a collar-mounted sensor, and labeled by experienced human observers according to five behaviors. Our results indicate that integrating data augmentation with the training process can substantially improve time series classification performance while retaining a fixed convolutional neural network architecture. The improvement is maximized when the dataset is balanced by applying a suitable sampling scheme and the negative influence of data duplication is reduced via generating synthetic time series with Fourier surrogates. With the proposed approach, the overall accuracy is improved from 90% to 96%, and the classification accuracy of an under-represented behavior, namely grazing, is elevated from 45% to 91%. This work provides a direction toward a general methodology, motivating research on other datasets and applications.
doi_str_mv 10.1109/JSEN.2022.3219594
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2022_3219594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9944648</ieee_id><sourcerecordid>2754152777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a8472cb8b842ecd66bac6030a12515d366f415ace81660311ad3dafb46672ebe3</originalsourceid><addsrcrecordid>eNo9UNtKxDAQLaLg9QPEl4Cvds2tSevbeldEwVXwrUzTaY20yZp2Bb_A3zZlxac5zJzLcJLkkNEZY7Q4vV9cPc445XwmOCuyQm4kOyzL8pRpmW9OWNBUCv22newOwwelrNCZ3kl-7tyIbYARa3IJI5D5qu3RjTBa70jjA5kbgx0G3-OIgbzYHskCg8WBWEfO8R2-bGQ9o_Gts5PqjDz7Lp59QxbQLzvr2hNyDh04EyEBV5Nrv4oOgSxWIfg2hg_7yVYD3YAHf3Mveb2-erm4TR-ebu4u5g-pEUKNKeRSc1PlVS45mlqpCoyiggLjGctqoVQjWQYGc6binjGoRQ1NJZXSHCsUe8nx2ncZ_OcKh7H8iL-4GFlynUUt11pHFluzTPDDELApl8H2EL5LRsup73Lqu5z6Lv_6jpqjtcYi4j-_KKRUMhe_Kst9xA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754152777</pqid></control><display><type>article</type><title>Integrated Data Augmentation for Accelerometer Time Series in Behavior Recognition: Roles of Sampling, Balancing and Fourier Surrogates</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Chao ; Minati, Ludovico ; Tokgoz, Korkut Kaan ; Fukawa, Masamoto ; Bartels, Jim ; Sihan, A ; Takeda, Ken-ichi ; Ito, Hiroyuki</creator><creatorcontrib>Li, Chao ; Minati, Ludovico ; Tokgoz, Korkut Kaan ; Fukawa, Masamoto ; Bartels, Jim ; Sihan, A ; Takeda, Ken-ichi ; Ito, Hiroyuki</creatorcontrib><description>The behavioral monitoring of farmed animals such as cattle is a fundamental element of precision farming in that it enables unobtrusive ongoing health monitoring. This application presents two ubiquitous challenges typical of sensing applications of internet-of-things: limited dataset size and dataset imbalance. Recently, data augmentation has emerged as a way of addressing their negative influences on the training process without overburdening the data acquisition phase. However, there remains no consensus regarding which methods should be applied to time series and in what combination. Here, we present the first comprehensive analysis that synergistically combines multiple approaches. These approaches are benchmarked on a dataset of triaxial accelerometer time series, which were acquired from six freely roaming cows through a collar-mounted sensor, and labeled by experienced human observers according to five behaviors. Our results indicate that integrating data augmentation with the training process can substantially improve time series classification performance while retaining a fixed convolutional neural network architecture. The improvement is maximized when the dataset is balanced by applying a suitable sampling scheme and the negative influence of data duplication is reduced via generating synthetic time series with Fourier surrogates. With the proposed approach, the overall accuracy is improved from 90% to 96%, and the classification accuracy of an under-represented behavior, namely grazing, is elevated from 45% to 91%. This work provides a direction toward a general methodology, motivating research on other datasets and applications.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3219594</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometer ; Accelerometers ; animal behavior ; Artificial neural networks ; Behavioral sciences ; Classification ; Computer architecture ; Cows ; Data acquisition ; Data augmentation ; Datasets ; Fourier series ; Fourier surrogates ; imbalanced dataset ; Internet of Things ; Monitoring ; Sampling ; sensor data processing ; Sensor phenomena and characterization ; Sensors ; Time series ; Time series analysis ; Training</subject><ispartof>IEEE sensors journal, 2022-12, Vol.22 (24), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-a8472cb8b842ecd66bac6030a12515d366f415ace81660311ad3dafb46672ebe3</citedby><cites>FETCH-LOGICAL-c336t-a8472cb8b842ecd66bac6030a12515d366f415ace81660311ad3dafb46672ebe3</cites><orcidid>0000-0002-4310-4913 ; 0000-0002-6411-8070 ; 0000-0002-2532-1674 ; 0000-0002-5724-6349 ; 0000-0002-9999-1654 ; 0000-0002-5687-0019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9944648$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Minati, Ludovico</creatorcontrib><creatorcontrib>Tokgoz, Korkut Kaan</creatorcontrib><creatorcontrib>Fukawa, Masamoto</creatorcontrib><creatorcontrib>Bartels, Jim</creatorcontrib><creatorcontrib>Sihan, A</creatorcontrib><creatorcontrib>Takeda, Ken-ichi</creatorcontrib><creatorcontrib>Ito, Hiroyuki</creatorcontrib><title>Integrated Data Augmentation for Accelerometer Time Series in Behavior Recognition: Roles of Sampling, Balancing and Fourier Surrogates</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The behavioral monitoring of farmed animals such as cattle is a fundamental element of precision farming in that it enables unobtrusive ongoing health monitoring. This application presents two ubiquitous challenges typical of sensing applications of internet-of-things: limited dataset size and dataset imbalance. Recently, data augmentation has emerged as a way of addressing their negative influences on the training process without overburdening the data acquisition phase. However, there remains no consensus regarding which methods should be applied to time series and in what combination. Here, we present the first comprehensive analysis that synergistically combines multiple approaches. These approaches are benchmarked on a dataset of triaxial accelerometer time series, which were acquired from six freely roaming cows through a collar-mounted sensor, and labeled by experienced human observers according to five behaviors. Our results indicate that integrating data augmentation with the training process can substantially improve time series classification performance while retaining a fixed convolutional neural network architecture. The improvement is maximized when the dataset is balanced by applying a suitable sampling scheme and the negative influence of data duplication is reduced via generating synthetic time series with Fourier surrogates. With the proposed approach, the overall accuracy is improved from 90% to 96%, and the classification accuracy of an under-represented behavior, namely grazing, is elevated from 45% to 91%. This work provides a direction toward a general methodology, motivating research on other datasets and applications.</description><subject>Accelerometer</subject><subject>Accelerometers</subject><subject>animal behavior</subject><subject>Artificial neural networks</subject><subject>Behavioral sciences</subject><subject>Classification</subject><subject>Computer architecture</subject><subject>Cows</subject><subject>Data acquisition</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Fourier series</subject><subject>Fourier surrogates</subject><subject>imbalanced dataset</subject><subject>Internet of Things</subject><subject>Monitoring</subject><subject>Sampling</subject><subject>sensor data processing</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Training</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9UNtKxDAQLaLg9QPEl4Cvds2tSevbeldEwVXwrUzTaY20yZp2Bb_A3zZlxac5zJzLcJLkkNEZY7Q4vV9cPc445XwmOCuyQm4kOyzL8pRpmW9OWNBUCv22newOwwelrNCZ3kl-7tyIbYARa3IJI5D5qu3RjTBa70jjA5kbgx0G3-OIgbzYHskCg8WBWEfO8R2-bGQ9o_Gts5PqjDz7Lp59QxbQLzvr2hNyDh04EyEBV5Nrv4oOgSxWIfg2hg_7yVYD3YAHf3Mveb2-erm4TR-ebu4u5g-pEUKNKeRSc1PlVS45mlqpCoyiggLjGctqoVQjWQYGc6binjGoRQ1NJZXSHCsUe8nx2ncZ_OcKh7H8iL-4GFlynUUt11pHFluzTPDDELApl8H2EL5LRsup73Lqu5z6Lv_6jpqjtcYi4j-_KKRUMhe_Kst9xA</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Li, Chao</creator><creator>Minati, Ludovico</creator><creator>Tokgoz, Korkut Kaan</creator><creator>Fukawa, Masamoto</creator><creator>Bartels, Jim</creator><creator>Sihan, A</creator><creator>Takeda, Ken-ichi</creator><creator>Ito, Hiroyuki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4310-4913</orcidid><orcidid>https://orcid.org/0000-0002-6411-8070</orcidid><orcidid>https://orcid.org/0000-0002-2532-1674</orcidid><orcidid>https://orcid.org/0000-0002-5724-6349</orcidid><orcidid>https://orcid.org/0000-0002-9999-1654</orcidid><orcidid>https://orcid.org/0000-0002-5687-0019</orcidid></search><sort><creationdate>20221215</creationdate><title>Integrated Data Augmentation for Accelerometer Time Series in Behavior Recognition: Roles of Sampling, Balancing and Fourier Surrogates</title><author>Li, Chao ; Minati, Ludovico ; Tokgoz, Korkut Kaan ; Fukawa, Masamoto ; Bartels, Jim ; Sihan, A ; Takeda, Ken-ichi ; Ito, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a8472cb8b842ecd66bac6030a12515d366f415ace81660311ad3dafb46672ebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerometer</topic><topic>Accelerometers</topic><topic>animal behavior</topic><topic>Artificial neural networks</topic><topic>Behavioral sciences</topic><topic>Classification</topic><topic>Computer architecture</topic><topic>Cows</topic><topic>Data acquisition</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Fourier series</topic><topic>Fourier surrogates</topic><topic>imbalanced dataset</topic><topic>Internet of Things</topic><topic>Monitoring</topic><topic>Sampling</topic><topic>sensor data processing</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Minati, Ludovico</creatorcontrib><creatorcontrib>Tokgoz, Korkut Kaan</creatorcontrib><creatorcontrib>Fukawa, Masamoto</creatorcontrib><creatorcontrib>Bartels, Jim</creatorcontrib><creatorcontrib>Sihan, A</creatorcontrib><creatorcontrib>Takeda, Ken-ichi</creatorcontrib><creatorcontrib>Ito, Hiroyuki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chao</au><au>Minati, Ludovico</au><au>Tokgoz, Korkut Kaan</au><au>Fukawa, Masamoto</au><au>Bartels, Jim</au><au>Sihan, A</au><au>Takeda, Ken-ichi</au><au>Ito, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Data Augmentation for Accelerometer Time Series in Behavior Recognition: Roles of Sampling, Balancing and Fourier Surrogates</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-12-15</date><risdate>2022</risdate><volume>22</volume><issue>24</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The behavioral monitoring of farmed animals such as cattle is a fundamental element of precision farming in that it enables unobtrusive ongoing health monitoring. This application presents two ubiquitous challenges typical of sensing applications of internet-of-things: limited dataset size and dataset imbalance. Recently, data augmentation has emerged as a way of addressing their negative influences on the training process without overburdening the data acquisition phase. However, there remains no consensus regarding which methods should be applied to time series and in what combination. Here, we present the first comprehensive analysis that synergistically combines multiple approaches. These approaches are benchmarked on a dataset of triaxial accelerometer time series, which were acquired from six freely roaming cows through a collar-mounted sensor, and labeled by experienced human observers according to five behaviors. Our results indicate that integrating data augmentation with the training process can substantially improve time series classification performance while retaining a fixed convolutional neural network architecture. The improvement is maximized when the dataset is balanced by applying a suitable sampling scheme and the negative influence of data duplication is reduced via generating synthetic time series with Fourier surrogates. With the proposed approach, the overall accuracy is improved from 90% to 96%, and the classification accuracy of an under-represented behavior, namely grazing, is elevated from 45% to 91%. This work provides a direction toward a general methodology, motivating research on other datasets and applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3219594</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4310-4913</orcidid><orcidid>https://orcid.org/0000-0002-6411-8070</orcidid><orcidid>https://orcid.org/0000-0002-2532-1674</orcidid><orcidid>https://orcid.org/0000-0002-5724-6349</orcidid><orcidid>https://orcid.org/0000-0002-9999-1654</orcidid><orcidid>https://orcid.org/0000-0002-5687-0019</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-12, Vol.22 (24), p.1-1
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2022_3219594
source IEEE Electronic Library (IEL)
subjects Accelerometer
Accelerometers
animal behavior
Artificial neural networks
Behavioral sciences
Classification
Computer architecture
Cows
Data acquisition
Data augmentation
Datasets
Fourier series
Fourier surrogates
imbalanced dataset
Internet of Things
Monitoring
Sampling
sensor data processing
Sensor phenomena and characterization
Sensors
Time series
Time series analysis
Training
title Integrated Data Augmentation for Accelerometer Time Series in Behavior Recognition: Roles of Sampling, Balancing and Fourier Surrogates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Data%20Augmentation%20for%20Accelerometer%20Time%20Series%20in%20Behavior%20Recognition:%20Roles%20of%20Sampling,%20Balancing%20and%20Fourier%20Surrogates&rft.jtitle=IEEE%20sensors%20journal&rft.au=Li,%20Chao&rft.date=2022-12-15&rft.volume=22&rft.issue=24&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3219594&rft_dat=%3Cproquest_cross%3E2754152777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754152777&rft_id=info:pmid/&rft_ieee_id=9944648&rfr_iscdi=true