Integrated Data Augmentation for Accelerometer Time Series in Behavior Recognition: Roles of Sampling, Balancing and Fourier Surrogates
The behavioral monitoring of farmed animals such as cattle is a fundamental element of precision farming in that it enables unobtrusive ongoing health monitoring. This application presents two ubiquitous challenges typical of sensing applications of internet-of-things: limited dataset size and datas...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2022-12, Vol.22 (24), p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 24 |
container_start_page | 1 |
container_title | IEEE sensors journal |
container_volume | 22 |
creator | Li, Chao Minati, Ludovico Tokgoz, Korkut Kaan Fukawa, Masamoto Bartels, Jim Sihan, A Takeda, Ken-ichi Ito, Hiroyuki |
description | The behavioral monitoring of farmed animals such as cattle is a fundamental element of precision farming in that it enables unobtrusive ongoing health monitoring. This application presents two ubiquitous challenges typical of sensing applications of internet-of-things: limited dataset size and dataset imbalance. Recently, data augmentation has emerged as a way of addressing their negative influences on the training process without overburdening the data acquisition phase. However, there remains no consensus regarding which methods should be applied to time series and in what combination. Here, we present the first comprehensive analysis that synergistically combines multiple approaches. These approaches are benchmarked on a dataset of triaxial accelerometer time series, which were acquired from six freely roaming cows through a collar-mounted sensor, and labeled by experienced human observers according to five behaviors. Our results indicate that integrating data augmentation with the training process can substantially improve time series classification performance while retaining a fixed convolutional neural network architecture. The improvement is maximized when the dataset is balanced by applying a suitable sampling scheme and the negative influence of data duplication is reduced via generating synthetic time series with Fourier surrogates. With the proposed approach, the overall accuracy is improved from 90% to 96%, and the classification accuracy of an under-represented behavior, namely grazing, is elevated from 45% to 91%. This work provides a direction toward a general methodology, motivating research on other datasets and applications. |
doi_str_mv | 10.1109/JSEN.2022.3219594 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2022_3219594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9944648</ieee_id><sourcerecordid>2754152777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a8472cb8b842ecd66bac6030a12515d366f415ace81660311ad3dafb46672ebe3</originalsourceid><addsrcrecordid>eNo9UNtKxDAQLaLg9QPEl4Cvds2tSevbeldEwVXwrUzTaY20yZp2Bb_A3zZlxac5zJzLcJLkkNEZY7Q4vV9cPc445XwmOCuyQm4kOyzL8pRpmW9OWNBUCv22newOwwelrNCZ3kl-7tyIbYARa3IJI5D5qu3RjTBa70jjA5kbgx0G3-OIgbzYHskCg8WBWEfO8R2-bGQ9o_Gts5PqjDz7Lp59QxbQLzvr2hNyDh04EyEBV5Nrv4oOgSxWIfg2hg_7yVYD3YAHf3Mveb2-erm4TR-ebu4u5g-pEUKNKeRSc1PlVS45mlqpCoyiggLjGctqoVQjWQYGc6binjGoRQ1NJZXSHCsUe8nx2ncZ_OcKh7H8iL-4GFlynUUt11pHFluzTPDDELApl8H2EL5LRsup73Lqu5z6Lv_6jpqjtcYi4j-_KKRUMhe_Kst9xA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754152777</pqid></control><display><type>article</type><title>Integrated Data Augmentation for Accelerometer Time Series in Behavior Recognition: Roles of Sampling, Balancing and Fourier Surrogates</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Chao ; Minati, Ludovico ; Tokgoz, Korkut Kaan ; Fukawa, Masamoto ; Bartels, Jim ; Sihan, A ; Takeda, Ken-ichi ; Ito, Hiroyuki</creator><creatorcontrib>Li, Chao ; Minati, Ludovico ; Tokgoz, Korkut Kaan ; Fukawa, Masamoto ; Bartels, Jim ; Sihan, A ; Takeda, Ken-ichi ; Ito, Hiroyuki</creatorcontrib><description>The behavioral monitoring of farmed animals such as cattle is a fundamental element of precision farming in that it enables unobtrusive ongoing health monitoring. This application presents two ubiquitous challenges typical of sensing applications of internet-of-things: limited dataset size and dataset imbalance. Recently, data augmentation has emerged as a way of addressing their negative influences on the training process without overburdening the data acquisition phase. However, there remains no consensus regarding which methods should be applied to time series and in what combination. Here, we present the first comprehensive analysis that synergistically combines multiple approaches. These approaches are benchmarked on a dataset of triaxial accelerometer time series, which were acquired from six freely roaming cows through a collar-mounted sensor, and labeled by experienced human observers according to five behaviors. Our results indicate that integrating data augmentation with the training process can substantially improve time series classification performance while retaining a fixed convolutional neural network architecture. The improvement is maximized when the dataset is balanced by applying a suitable sampling scheme and the negative influence of data duplication is reduced via generating synthetic time series with Fourier surrogates. With the proposed approach, the overall accuracy is improved from 90% to 96%, and the classification accuracy of an under-represented behavior, namely grazing, is elevated from 45% to 91%. This work provides a direction toward a general methodology, motivating research on other datasets and applications.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3219594</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometer ; Accelerometers ; animal behavior ; Artificial neural networks ; Behavioral sciences ; Classification ; Computer architecture ; Cows ; Data acquisition ; Data augmentation ; Datasets ; Fourier series ; Fourier surrogates ; imbalanced dataset ; Internet of Things ; Monitoring ; Sampling ; sensor data processing ; Sensor phenomena and characterization ; Sensors ; Time series ; Time series analysis ; Training</subject><ispartof>IEEE sensors journal, 2022-12, Vol.22 (24), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-a8472cb8b842ecd66bac6030a12515d366f415ace81660311ad3dafb46672ebe3</citedby><cites>FETCH-LOGICAL-c336t-a8472cb8b842ecd66bac6030a12515d366f415ace81660311ad3dafb46672ebe3</cites><orcidid>0000-0002-4310-4913 ; 0000-0002-6411-8070 ; 0000-0002-2532-1674 ; 0000-0002-5724-6349 ; 0000-0002-9999-1654 ; 0000-0002-5687-0019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9944648$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Minati, Ludovico</creatorcontrib><creatorcontrib>Tokgoz, Korkut Kaan</creatorcontrib><creatorcontrib>Fukawa, Masamoto</creatorcontrib><creatorcontrib>Bartels, Jim</creatorcontrib><creatorcontrib>Sihan, A</creatorcontrib><creatorcontrib>Takeda, Ken-ichi</creatorcontrib><creatorcontrib>Ito, Hiroyuki</creatorcontrib><title>Integrated Data Augmentation for Accelerometer Time Series in Behavior Recognition: Roles of Sampling, Balancing and Fourier Surrogates</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The behavioral monitoring of farmed animals such as cattle is a fundamental element of precision farming in that it enables unobtrusive ongoing health monitoring. This application presents two ubiquitous challenges typical of sensing applications of internet-of-things: limited dataset size and dataset imbalance. Recently, data augmentation has emerged as a way of addressing their negative influences on the training process without overburdening the data acquisition phase. However, there remains no consensus regarding which methods should be applied to time series and in what combination. Here, we present the first comprehensive analysis that synergistically combines multiple approaches. These approaches are benchmarked on a dataset of triaxial accelerometer time series, which were acquired from six freely roaming cows through a collar-mounted sensor, and labeled by experienced human observers according to five behaviors. Our results indicate that integrating data augmentation with the training process can substantially improve time series classification performance while retaining a fixed convolutional neural network architecture. The improvement is maximized when the dataset is balanced by applying a suitable sampling scheme and the negative influence of data duplication is reduced via generating synthetic time series with Fourier surrogates. With the proposed approach, the overall accuracy is improved from 90% to 96%, and the classification accuracy of an under-represented behavior, namely grazing, is elevated from 45% to 91%. This work provides a direction toward a general methodology, motivating research on other datasets and applications.</description><subject>Accelerometer</subject><subject>Accelerometers</subject><subject>animal behavior</subject><subject>Artificial neural networks</subject><subject>Behavioral sciences</subject><subject>Classification</subject><subject>Computer architecture</subject><subject>Cows</subject><subject>Data acquisition</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Fourier series</subject><subject>Fourier surrogates</subject><subject>imbalanced dataset</subject><subject>Internet of Things</subject><subject>Monitoring</subject><subject>Sampling</subject><subject>sensor data processing</subject><subject>Sensor phenomena and characterization</subject><subject>Sensors</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Training</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9UNtKxDAQLaLg9QPEl4Cvds2tSevbeldEwVXwrUzTaY20yZp2Bb_A3zZlxac5zJzLcJLkkNEZY7Q4vV9cPc445XwmOCuyQm4kOyzL8pRpmW9OWNBUCv22newOwwelrNCZ3kl-7tyIbYARa3IJI5D5qu3RjTBa70jjA5kbgx0G3-OIgbzYHskCg8WBWEfO8R2-bGQ9o_Gts5PqjDz7Lp59QxbQLzvr2hNyDh04EyEBV5Nrv4oOgSxWIfg2hg_7yVYD3YAHf3Mveb2-erm4TR-ebu4u5g-pEUKNKeRSc1PlVS45mlqpCoyiggLjGctqoVQjWQYGc6binjGoRQ1NJZXSHCsUe8nx2ncZ_OcKh7H8iL-4GFlynUUt11pHFluzTPDDELApl8H2EL5LRsup73Lqu5z6Lv_6jpqjtcYi4j-_KKRUMhe_Kst9xA</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Li, Chao</creator><creator>Minati, Ludovico</creator><creator>Tokgoz, Korkut Kaan</creator><creator>Fukawa, Masamoto</creator><creator>Bartels, Jim</creator><creator>Sihan, A</creator><creator>Takeda, Ken-ichi</creator><creator>Ito, Hiroyuki</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4310-4913</orcidid><orcidid>https://orcid.org/0000-0002-6411-8070</orcidid><orcidid>https://orcid.org/0000-0002-2532-1674</orcidid><orcidid>https://orcid.org/0000-0002-5724-6349</orcidid><orcidid>https://orcid.org/0000-0002-9999-1654</orcidid><orcidid>https://orcid.org/0000-0002-5687-0019</orcidid></search><sort><creationdate>20221215</creationdate><title>Integrated Data Augmentation for Accelerometer Time Series in Behavior Recognition: Roles of Sampling, Balancing and Fourier Surrogates</title><author>Li, Chao ; Minati, Ludovico ; Tokgoz, Korkut Kaan ; Fukawa, Masamoto ; Bartels, Jim ; Sihan, A ; Takeda, Ken-ichi ; Ito, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a8472cb8b842ecd66bac6030a12515d366f415ace81660311ad3dafb46672ebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerometer</topic><topic>Accelerometers</topic><topic>animal behavior</topic><topic>Artificial neural networks</topic><topic>Behavioral sciences</topic><topic>Classification</topic><topic>Computer architecture</topic><topic>Cows</topic><topic>Data acquisition</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Fourier series</topic><topic>Fourier surrogates</topic><topic>imbalanced dataset</topic><topic>Internet of Things</topic><topic>Monitoring</topic><topic>Sampling</topic><topic>sensor data processing</topic><topic>Sensor phenomena and characterization</topic><topic>Sensors</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Minati, Ludovico</creatorcontrib><creatorcontrib>Tokgoz, Korkut Kaan</creatorcontrib><creatorcontrib>Fukawa, Masamoto</creatorcontrib><creatorcontrib>Bartels, Jim</creatorcontrib><creatorcontrib>Sihan, A</creatorcontrib><creatorcontrib>Takeda, Ken-ichi</creatorcontrib><creatorcontrib>Ito, Hiroyuki</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chao</au><au>Minati, Ludovico</au><au>Tokgoz, Korkut Kaan</au><au>Fukawa, Masamoto</au><au>Bartels, Jim</au><au>Sihan, A</au><au>Takeda, Ken-ichi</au><au>Ito, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Data Augmentation for Accelerometer Time Series in Behavior Recognition: Roles of Sampling, Balancing and Fourier Surrogates</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-12-15</date><risdate>2022</risdate><volume>22</volume><issue>24</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The behavioral monitoring of farmed animals such as cattle is a fundamental element of precision farming in that it enables unobtrusive ongoing health monitoring. This application presents two ubiquitous challenges typical of sensing applications of internet-of-things: limited dataset size and dataset imbalance. Recently, data augmentation has emerged as a way of addressing their negative influences on the training process without overburdening the data acquisition phase. However, there remains no consensus regarding which methods should be applied to time series and in what combination. Here, we present the first comprehensive analysis that synergistically combines multiple approaches. These approaches are benchmarked on a dataset of triaxial accelerometer time series, which were acquired from six freely roaming cows through a collar-mounted sensor, and labeled by experienced human observers according to five behaviors. Our results indicate that integrating data augmentation with the training process can substantially improve time series classification performance while retaining a fixed convolutional neural network architecture. The improvement is maximized when the dataset is balanced by applying a suitable sampling scheme and the negative influence of data duplication is reduced via generating synthetic time series with Fourier surrogates. With the proposed approach, the overall accuracy is improved from 90% to 96%, and the classification accuracy of an under-represented behavior, namely grazing, is elevated from 45% to 91%. This work provides a direction toward a general methodology, motivating research on other datasets and applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3219594</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4310-4913</orcidid><orcidid>https://orcid.org/0000-0002-6411-8070</orcidid><orcidid>https://orcid.org/0000-0002-2532-1674</orcidid><orcidid>https://orcid.org/0000-0002-5724-6349</orcidid><orcidid>https://orcid.org/0000-0002-9999-1654</orcidid><orcidid>https://orcid.org/0000-0002-5687-0019</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2022-12, Vol.22 (24), p.1-1 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2022_3219594 |
source | IEEE Electronic Library (IEL) |
subjects | Accelerometer Accelerometers animal behavior Artificial neural networks Behavioral sciences Classification Computer architecture Cows Data acquisition Data augmentation Datasets Fourier series Fourier surrogates imbalanced dataset Internet of Things Monitoring Sampling sensor data processing Sensor phenomena and characterization Sensors Time series Time series analysis Training |
title | Integrated Data Augmentation for Accelerometer Time Series in Behavior Recognition: Roles of Sampling, Balancing and Fourier Surrogates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Data%20Augmentation%20for%20Accelerometer%20Time%20Series%20in%20Behavior%20Recognition:%20Roles%20of%20Sampling,%20Balancing%20and%20Fourier%20Surrogates&rft.jtitle=IEEE%20sensors%20journal&rft.au=Li,%20Chao&rft.date=2022-12-15&rft.volume=22&rft.issue=24&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3219594&rft_dat=%3Cproquest_cross%3E2754152777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754152777&rft_id=info:pmid/&rft_ieee_id=9944648&rfr_iscdi=true |