COVID-19 Social Distance Proximity Estimation Using Machine Learning Analyses of Smartphone Sensor Data

Airborne transmittable diseases such as COVID-19 spread from an infected to healthy person when they are in proximity to each other. Epidemiologists suggest that the risk of COVID-19 transmission increases when an infected person is within 6 feet from a healthy person and contact between them lasts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2022-05, Vol.22 (10), p.9568-9579
Hauptverfasser: Semenov, Oleksandr, Agu, Emmanuel, Pahlavan, Kaveh, Su, Zhuoran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9579
container_issue 10
container_start_page 9568
container_title IEEE sensors journal
container_volume 22
creator Semenov, Oleksandr
Agu, Emmanuel
Pahlavan, Kaveh
Su, Zhuoran
description Airborne transmittable diseases such as COVID-19 spread from an infected to healthy person when they are in proximity to each other. Epidemiologists suggest that the risk of COVID-19 transmission increases when an infected person is within 6 feet from a healthy person and contact between them lasts longer than 15 minutes (also called Too Close For Too Long (TC4TL). In this paper, we systematically investigate Machine Learning (ML) methods to detect proximity by analyzing publicly available dataset gathered from smartphones' built-in Bluetooth, accelerometer, and gyroscope sensors. We extract 20 statistical features from accelerometer and gyroscope sensors signals and 28 statistical features of Bluetooth signal, which are classified to determine whether subjects are closer than 6 feet as well as the subjects' context. Using machine learning regression, we also estimate the range between the subjects. Among the 19 ML classification and regression methods that we explored, we found that ensemble (boosted and bagged trees) methods perform best with accelerometer and gyroscope data while regression trees ML algorithm performs best with the Bluetooth signal. We further explore sensor fusion methods and demonstrate that the combination of all three sensors achieves a higher accuracy of range estimation than when using each individual sensor. We show that proximity (< 6ft or not) can be classified with 72%-90% accuracy using the accelerometer, 78%-84% accuracy using gyroscope sensor, and with 76%-92% accuracy with the Bluetooth data. Our model outperforms the current state-of-the-art methods using neural networks and achieved a Normalized Decision Cost Function (nDCF) score of 0.34 with Bluetooth radio and 0.36 with sensor fusion.
doi_str_mv 10.1109/JSEN.2022.3162605
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2022_3162605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9743478</ieee_id><sourcerecordid>2663643442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-2d624057d2537e5f205a03ae46c1c60c98e1da01dac1ad2a9017daf6a71f9a683</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_Nx26yOUpbtVKtUCvewpDNtintpiYp2H_vLi0ehhlm3nmZeRC6pWRAKVEPr_Px-4ARxgacCiZIcYZ6tCjKjMq8PO9qTrKcy-9LdBXjmhCqZCF7aDmcfU1GGVV47o2DDR65mKAxFn8E_-u2Lh3wOCa3heR8gxfRNUv8BmblGounFkLTNR4b2ByijdjXeL6FkHYr387ntok-4BEkuEYXNWyivTnlPlo8jT-HL9l09jwZPk4zwxRPGasEy0khK1ZwaYuakQIIB5sLQ40gRpWWVkDaMBQqBopQWUEtQNJagSh5H90ffXfB_-xtTHrt96E9L2omBBc5z3PWquhRZYKPMdha70L7YjhoSnTHU3c8dcdTn3i2O3fHHWet_dcr2TrKkv8Bd9lw9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663643442</pqid></control><display><type>article</type><title>COVID-19 Social Distance Proximity Estimation Using Machine Learning Analyses of Smartphone Sensor Data</title><source>IEEE Electronic Library (IEL)</source><creator>Semenov, Oleksandr ; Agu, Emmanuel ; Pahlavan, Kaveh ; Su, Zhuoran</creator><creatorcontrib>Semenov, Oleksandr ; Agu, Emmanuel ; Pahlavan, Kaveh ; Su, Zhuoran</creatorcontrib><description>Airborne transmittable diseases such as COVID-19 spread from an infected to healthy person when they are in proximity to each other. Epidemiologists suggest that the risk of COVID-19 transmission increases when an infected person is within 6 feet from a healthy person and contact between them lasts longer than 15 minutes (also called Too Close For Too Long (TC4TL). In this paper, we systematically investigate Machine Learning (ML) methods to detect proximity by analyzing publicly available dataset gathered from smartphones' built-in Bluetooth, accelerometer, and gyroscope sensors. We extract 20 statistical features from accelerometer and gyroscope sensors signals and 28 statistical features of Bluetooth signal, which are classified to determine whether subjects are closer than 6 feet as well as the subjects' context. Using machine learning regression, we also estimate the range between the subjects. Among the 19 ML classification and regression methods that we explored, we found that ensemble (boosted and bagged trees) methods perform best with accelerometer and gyroscope data while regression trees ML algorithm performs best with the Bluetooth signal. We further explore sensor fusion methods and demonstrate that the combination of all three sensors achieves a higher accuracy of range estimation than when using each individual sensor. We show that proximity (&lt; 6ft or not) can be classified with 72%-90% accuracy using the accelerometer, 78%-84% accuracy using gyroscope sensor, and with 76%-92% accuracy with the Bluetooth data. Our model outperforms the current state-of-the-art methods using neural networks and achieved a Normalized Decision Cost Function (nDCF) score of 0.34 with Bluetooth radio and 0.36 with sensor fusion.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2022.3162605</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerometers ; Airborne sensing ; Algorithms ; Bluetooth ; Coronaviruses ; COVID-19 ; Disease transmission ; Feature extraction ; Gyroscopes ; Machine learning ; Maximum likelihood estimation ; Mobile handsets ; nDCF ; NIST challenge ; PACT dataset ; Proximity ; proximity detection ; Regression analysis ; RSSI ; Sensor fusion ; Sensors ; Signal classification ; Smartphones ; Statistical analysis</subject><ispartof>IEEE sensors journal, 2022-05, Vol.22 (10), p.9568-9579</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-2d624057d2537e5f205a03ae46c1c60c98e1da01dac1ad2a9017daf6a71f9a683</citedby><cites>FETCH-LOGICAL-c293t-2d624057d2537e5f205a03ae46c1c60c98e1da01dac1ad2a9017daf6a71f9a683</cites><orcidid>0000-0003-2874-0097 ; 0000-0001-7821-586X ; 0000-0002-6334-0761 ; 0000-0002-3361-4952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9743478$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9743478$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Semenov, Oleksandr</creatorcontrib><creatorcontrib>Agu, Emmanuel</creatorcontrib><creatorcontrib>Pahlavan, Kaveh</creatorcontrib><creatorcontrib>Su, Zhuoran</creatorcontrib><title>COVID-19 Social Distance Proximity Estimation Using Machine Learning Analyses of Smartphone Sensor Data</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Airborne transmittable diseases such as COVID-19 spread from an infected to healthy person when they are in proximity to each other. Epidemiologists suggest that the risk of COVID-19 transmission increases when an infected person is within 6 feet from a healthy person and contact between them lasts longer than 15 minutes (also called Too Close For Too Long (TC4TL). In this paper, we systematically investigate Machine Learning (ML) methods to detect proximity by analyzing publicly available dataset gathered from smartphones' built-in Bluetooth, accelerometer, and gyroscope sensors. We extract 20 statistical features from accelerometer and gyroscope sensors signals and 28 statistical features of Bluetooth signal, which are classified to determine whether subjects are closer than 6 feet as well as the subjects' context. Using machine learning regression, we also estimate the range between the subjects. Among the 19 ML classification and regression methods that we explored, we found that ensemble (boosted and bagged trees) methods perform best with accelerometer and gyroscope data while regression trees ML algorithm performs best with the Bluetooth signal. We further explore sensor fusion methods and demonstrate that the combination of all three sensors achieves a higher accuracy of range estimation than when using each individual sensor. We show that proximity (&lt; 6ft or not) can be classified with 72%-90% accuracy using the accelerometer, 78%-84% accuracy using gyroscope sensor, and with 76%-92% accuracy with the Bluetooth data. Our model outperforms the current state-of-the-art methods using neural networks and achieved a Normalized Decision Cost Function (nDCF) score of 0.34 with Bluetooth radio and 0.36 with sensor fusion.</description><subject>Accelerometers</subject><subject>Airborne sensing</subject><subject>Algorithms</subject><subject>Bluetooth</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Disease transmission</subject><subject>Feature extraction</subject><subject>Gyroscopes</subject><subject>Machine learning</subject><subject>Maximum likelihood estimation</subject><subject>Mobile handsets</subject><subject>nDCF</subject><subject>NIST challenge</subject><subject>PACT dataset</subject><subject>Proximity</subject><subject>proximity detection</subject><subject>Regression analysis</subject><subject>RSSI</subject><subject>Sensor fusion</subject><subject>Sensors</subject><subject>Signal classification</subject><subject>Smartphones</subject><subject>Statistical analysis</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_Nx26yOUpbtVKtUCvewpDNtintpiYp2H_vLi0ehhlm3nmZeRC6pWRAKVEPr_Px-4ARxgacCiZIcYZ6tCjKjMq8PO9qTrKcy-9LdBXjmhCqZCF7aDmcfU1GGVV47o2DDR65mKAxFn8E_-u2Lh3wOCa3heR8gxfRNUv8BmblGounFkLTNR4b2ByijdjXeL6FkHYr387ntok-4BEkuEYXNWyivTnlPlo8jT-HL9l09jwZPk4zwxRPGasEy0khK1ZwaYuakQIIB5sLQ40gRpWWVkDaMBQqBopQWUEtQNJagSh5H90ffXfB_-xtTHrt96E9L2omBBc5z3PWquhRZYKPMdha70L7YjhoSnTHU3c8dcdTn3i2O3fHHWet_dcr2TrKkv8Bd9lw9Q</recordid><startdate>20220515</startdate><enddate>20220515</enddate><creator>Semenov, Oleksandr</creator><creator>Agu, Emmanuel</creator><creator>Pahlavan, Kaveh</creator><creator>Su, Zhuoran</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2874-0097</orcidid><orcidid>https://orcid.org/0000-0001-7821-586X</orcidid><orcidid>https://orcid.org/0000-0002-6334-0761</orcidid><orcidid>https://orcid.org/0000-0002-3361-4952</orcidid></search><sort><creationdate>20220515</creationdate><title>COVID-19 Social Distance Proximity Estimation Using Machine Learning Analyses of Smartphone Sensor Data</title><author>Semenov, Oleksandr ; Agu, Emmanuel ; Pahlavan, Kaveh ; Su, Zhuoran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-2d624057d2537e5f205a03ae46c1c60c98e1da01dac1ad2a9017daf6a71f9a683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerometers</topic><topic>Airborne sensing</topic><topic>Algorithms</topic><topic>Bluetooth</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Disease transmission</topic><topic>Feature extraction</topic><topic>Gyroscopes</topic><topic>Machine learning</topic><topic>Maximum likelihood estimation</topic><topic>Mobile handsets</topic><topic>nDCF</topic><topic>NIST challenge</topic><topic>PACT dataset</topic><topic>Proximity</topic><topic>proximity detection</topic><topic>Regression analysis</topic><topic>RSSI</topic><topic>Sensor fusion</topic><topic>Sensors</topic><topic>Signal classification</topic><topic>Smartphones</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Semenov, Oleksandr</creatorcontrib><creatorcontrib>Agu, Emmanuel</creatorcontrib><creatorcontrib>Pahlavan, Kaveh</creatorcontrib><creatorcontrib>Su, Zhuoran</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Semenov, Oleksandr</au><au>Agu, Emmanuel</au><au>Pahlavan, Kaveh</au><au>Su, Zhuoran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COVID-19 Social Distance Proximity Estimation Using Machine Learning Analyses of Smartphone Sensor Data</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-05-15</date><risdate>2022</risdate><volume>22</volume><issue>10</issue><spage>9568</spage><epage>9579</epage><pages>9568-9579</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Airborne transmittable diseases such as COVID-19 spread from an infected to healthy person when they are in proximity to each other. Epidemiologists suggest that the risk of COVID-19 transmission increases when an infected person is within 6 feet from a healthy person and contact between them lasts longer than 15 minutes (also called Too Close For Too Long (TC4TL). In this paper, we systematically investigate Machine Learning (ML) methods to detect proximity by analyzing publicly available dataset gathered from smartphones' built-in Bluetooth, accelerometer, and gyroscope sensors. We extract 20 statistical features from accelerometer and gyroscope sensors signals and 28 statistical features of Bluetooth signal, which are classified to determine whether subjects are closer than 6 feet as well as the subjects' context. Using machine learning regression, we also estimate the range between the subjects. Among the 19 ML classification and regression methods that we explored, we found that ensemble (boosted and bagged trees) methods perform best with accelerometer and gyroscope data while regression trees ML algorithm performs best with the Bluetooth signal. We further explore sensor fusion methods and demonstrate that the combination of all three sensors achieves a higher accuracy of range estimation than when using each individual sensor. We show that proximity (&lt; 6ft or not) can be classified with 72%-90% accuracy using the accelerometer, 78%-84% accuracy using gyroscope sensor, and with 76%-92% accuracy with the Bluetooth data. Our model outperforms the current state-of-the-art methods using neural networks and achieved a Normalized Decision Cost Function (nDCF) score of 0.34 with Bluetooth radio and 0.36 with sensor fusion.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2022.3162605</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2874-0097</orcidid><orcidid>https://orcid.org/0000-0001-7821-586X</orcidid><orcidid>https://orcid.org/0000-0002-6334-0761</orcidid><orcidid>https://orcid.org/0000-0002-3361-4952</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-05, Vol.22 (10), p.9568-9579
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2022_3162605
source IEEE Electronic Library (IEL)
subjects Accelerometers
Airborne sensing
Algorithms
Bluetooth
Coronaviruses
COVID-19
Disease transmission
Feature extraction
Gyroscopes
Machine learning
Maximum likelihood estimation
Mobile handsets
nDCF
NIST challenge
PACT dataset
Proximity
proximity detection
Regression analysis
RSSI
Sensor fusion
Sensors
Signal classification
Smartphones
Statistical analysis
title COVID-19 Social Distance Proximity Estimation Using Machine Learning Analyses of Smartphone Sensor Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COVID-19%20Social%20Distance%20Proximity%20Estimation%20Using%20Machine%20Learning%20Analyses%20of%20Smartphone%20Sensor%20Data&rft.jtitle=IEEE%20sensors%20journal&rft.au=Semenov,%20Oleksandr&rft.date=2022-05-15&rft.volume=22&rft.issue=10&rft.spage=9568&rft.epage=9579&rft.pages=9568-9579&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2022.3162605&rft_dat=%3Cproquest_RIE%3E2663643442%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663643442&rft_id=info:pmid/&rft_ieee_id=9743478&rfr_iscdi=true