Velostat Sensor Array for Object Recognition

This paper presents a cost-effective pressure sensing system for object detection and identification. The pressure sensing system consists of a 27\times 27 piezoresistive sensor array made of carbon composite Velostat, a signal processing subsystem for signal scanning, amplification, registration,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2022-01, Vol.22 (2), p.1692-1704
Hauptverfasser: Yuan, Liangqi, Qu, Hongwei, Li, Jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1704
container_issue 2
container_start_page 1692
container_title IEEE sensors journal
container_volume 22
creator Yuan, Liangqi
Qu, Hongwei
Li, Jia
description This paper presents a cost-effective pressure sensing system for object detection and identification. The pressure sensing system consists of a 27\times 27 piezoresistive sensor array made of carbon composite Velostat, a signal processing subsystem for signal scanning, amplification, registration, and enhancement. A convolutional neural network is used to classify various objects through the pressure signals produced and processed by the sensing array. Based on systematic characterizations and calibrations of sensing materials and system sensitivity, three experiment setups are established to recognize 10 objects to be detected. In series of experiments, a pressure image data set consisting of 32264 frames of images is first assembled to represent the 10 objects. Contrast enhancement algorithm was used to process the pressure image data set and combined with a convolutional neural network ResNet-PI to classify the 10 objects. For pressure images collected with the preestablished three experiment setups, an overall accuracy of 0.9854 is achieved. Compared with other systems based on Velostat sensor array, the system demonstrated in this study features improvements in structural robustness, detection repeatability and system reliability, suggesting its potential applications in emerging areas including human-computer interaction and smart health monitoring.
doi_str_mv 10.1109/JSEN.2021.3132793
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2021_3132793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9635813</ieee_id><sourcerecordid>2619022968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-899a7963786599f2af72aa2b970be0ed010a8d0ddca6f87e0f90bbcc1dbd1ae73</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeDV1ZrfJ7h5LqV8UC1bF27LZTCSlZutueui_NyHF07yH550ZHsauESaIoO9f1ovXCQeOE4GCSy1O2AizTKUop-q0zwLSqZBf5-wixg0AapnJEbv7pK2PrW2TNTXRh2QWgj0kVZdWxYZcm7yR899N3da-uWRnld1GujrOMft4WLzPn9Ll6vF5PlumjmvRpkprK3UupMozrStuK8mt5YWWUBBQCQhWlVCWzuaVkgSVhqJwDsuiREtSjNntsHcX_O-eYms2fh-a7qThOWrgXOeqo3CgXPAxBqrMLtQ_NhwMgumlmF6K6aWYo5SuczN0aiL657tfM4VC_AH2nl0W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619022968</pqid></control><display><type>article</type><title>Velostat Sensor Array for Object Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Yuan, Liangqi ; Qu, Hongwei ; Li, Jia</creator><creatorcontrib>Yuan, Liangqi ; Qu, Hongwei ; Li, Jia</creatorcontrib><description>This paper presents a cost-effective pressure sensing system for object detection and identification. The pressure sensing system consists of a &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;27\times 27 &lt;/tex-math&gt;&lt;/inline-formula&gt; piezoresistive sensor array made of carbon composite Velostat, a signal processing subsystem for signal scanning, amplification, registration, and enhancement. A convolutional neural network is used to classify various objects through the pressure signals produced and processed by the sensing array. Based on systematic characterizations and calibrations of sensing materials and system sensitivity, three experiment setups are established to recognize 10 objects to be detected. In series of experiments, a pressure image data set consisting of 32264 frames of images is first assembled to represent the 10 objects. Contrast enhancement algorithm was used to process the pressure image data set and combined with a convolutional neural network ResNet-PI to classify the 10 objects. For pressure images collected with the preestablished three experiment setups, an overall accuracy of 0.9854 is achieved. Compared with other systems based on Velostat sensor array, the system demonstrated in this study features improvements in structural robustness, detection repeatability and system reliability, suggesting its potential applications in emerging areas including human-computer interaction and smart health monitoring.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3132793</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; crosstalk ; Datasets ; Image classification ; Image contrast ; Image enhancement ; machine learning ; Neural networks ; Object recognition ; Piezoresistance ; Pressure sensors ; Robot sensing systems ; Sensor arrays ; Sensor phenomena and characterization ; Sensor systems ; Sensors ; Signal processing ; Subsystems ; System reliability ; Velostat</subject><ispartof>IEEE sensors journal, 2022-01, Vol.22 (2), p.1692-1704</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-899a7963786599f2af72aa2b970be0ed010a8d0ddca6f87e0f90bbcc1dbd1ae73</citedby><cites>FETCH-LOGICAL-c293t-899a7963786599f2af72aa2b970be0ed010a8d0ddca6f87e0f90bbcc1dbd1ae73</cites><orcidid>0000-0002-9994-6773 ; 0000-0003-3443-4651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9635813$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9635813$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuan, Liangqi</creatorcontrib><creatorcontrib>Qu, Hongwei</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><title>Velostat Sensor Array for Object Recognition</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This paper presents a cost-effective pressure sensing system for object detection and identification. The pressure sensing system consists of a &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;27\times 27 &lt;/tex-math&gt;&lt;/inline-formula&gt; piezoresistive sensor array made of carbon composite Velostat, a signal processing subsystem for signal scanning, amplification, registration, and enhancement. A convolutional neural network is used to classify various objects through the pressure signals produced and processed by the sensing array. Based on systematic characterizations and calibrations of sensing materials and system sensitivity, three experiment setups are established to recognize 10 objects to be detected. In series of experiments, a pressure image data set consisting of 32264 frames of images is first assembled to represent the 10 objects. Contrast enhancement algorithm was used to process the pressure image data set and combined with a convolutional neural network ResNet-PI to classify the 10 objects. For pressure images collected with the preestablished three experiment setups, an overall accuracy of 0.9854 is achieved. Compared with other systems based on Velostat sensor array, the system demonstrated in this study features improvements in structural robustness, detection repeatability and system reliability, suggesting its potential applications in emerging areas including human-computer interaction and smart health monitoring.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>crosstalk</subject><subject>Datasets</subject><subject>Image classification</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>machine learning</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Piezoresistance</subject><subject>Pressure sensors</subject><subject>Robot sensing systems</subject><subject>Sensor arrays</subject><subject>Sensor phenomena and characterization</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Subsystems</subject><subject>System reliability</subject><subject>Velostat</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeDV1ZrfJ7h5LqV8UC1bF27LZTCSlZutueui_NyHF07yH550ZHsauESaIoO9f1ovXCQeOE4GCSy1O2AizTKUop-q0zwLSqZBf5-wixg0AapnJEbv7pK2PrW2TNTXRh2QWgj0kVZdWxYZcm7yR899N3da-uWRnld1GujrOMft4WLzPn9Ll6vF5PlumjmvRpkprK3UupMozrStuK8mt5YWWUBBQCQhWlVCWzuaVkgSVhqJwDsuiREtSjNntsHcX_O-eYms2fh-a7qThOWrgXOeqo3CgXPAxBqrMLtQ_NhwMgumlmF6K6aWYo5SuczN0aiL657tfM4VC_AH2nl0W</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Yuan, Liangqi</creator><creator>Qu, Hongwei</creator><creator>Li, Jia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9994-6773</orcidid><orcidid>https://orcid.org/0000-0003-3443-4651</orcidid></search><sort><creationdate>20220115</creationdate><title>Velostat Sensor Array for Object Recognition</title><author>Yuan, Liangqi ; Qu, Hongwei ; Li, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-899a7963786599f2af72aa2b970be0ed010a8d0ddca6f87e0f90bbcc1dbd1ae73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>crosstalk</topic><topic>Datasets</topic><topic>Image classification</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>machine learning</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Piezoresistance</topic><topic>Pressure sensors</topic><topic>Robot sensing systems</topic><topic>Sensor arrays</topic><topic>Sensor phenomena and characterization</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Subsystems</topic><topic>System reliability</topic><topic>Velostat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Liangqi</creatorcontrib><creatorcontrib>Qu, Hongwei</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuan, Liangqi</au><au>Qu, Hongwei</au><au>Li, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Velostat Sensor Array for Object Recognition</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-01-15</date><risdate>2022</risdate><volume>22</volume><issue>2</issue><spage>1692</spage><epage>1704</epage><pages>1692-1704</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This paper presents a cost-effective pressure sensing system for object detection and identification. The pressure sensing system consists of a &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;27\times 27 &lt;/tex-math&gt;&lt;/inline-formula&gt; piezoresistive sensor array made of carbon composite Velostat, a signal processing subsystem for signal scanning, amplification, registration, and enhancement. A convolutional neural network is used to classify various objects through the pressure signals produced and processed by the sensing array. Based on systematic characterizations and calibrations of sensing materials and system sensitivity, three experiment setups are established to recognize 10 objects to be detected. In series of experiments, a pressure image data set consisting of 32264 frames of images is first assembled to represent the 10 objects. Contrast enhancement algorithm was used to process the pressure image data set and combined with a convolutional neural network ResNet-PI to classify the 10 objects. For pressure images collected with the preestablished three experiment setups, an overall accuracy of 0.9854 is achieved. Compared with other systems based on Velostat sensor array, the system demonstrated in this study features improvements in structural robustness, detection repeatability and system reliability, suggesting its potential applications in emerging areas including human-computer interaction and smart health monitoring.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3132793</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9994-6773</orcidid><orcidid>https://orcid.org/0000-0003-3443-4651</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-01, Vol.22 (2), p.1692-1704
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2021_3132793
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
crosstalk
Datasets
Image classification
Image contrast
Image enhancement
machine learning
Neural networks
Object recognition
Piezoresistance
Pressure sensors
Robot sensing systems
Sensor arrays
Sensor phenomena and characterization
Sensor systems
Sensors
Signal processing
Subsystems
System reliability
Velostat
title Velostat Sensor Array for Object Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Velostat%20Sensor%20Array%20for%20Object%20Recognition&rft.jtitle=IEEE%20sensors%20journal&rft.au=Yuan,%20Liangqi&rft.date=2022-01-15&rft.volume=22&rft.issue=2&rft.spage=1692&rft.epage=1704&rft.pages=1692-1704&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3132793&rft_dat=%3Cproquest_RIE%3E2619022968%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619022968&rft_id=info:pmid/&rft_ieee_id=9635813&rfr_iscdi=true