Velostat Sensor Array for Object Recognition
This paper presents a cost-effective pressure sensing system for object detection and identification. The pressure sensing system consists of a 27\times 27 piezoresistive sensor array made of carbon composite Velostat, a signal processing subsystem for signal scanning, amplification, registration,...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2022-01, Vol.22 (2), p.1692-1704 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1704 |
---|---|
container_issue | 2 |
container_start_page | 1692 |
container_title | IEEE sensors journal |
container_volume | 22 |
creator | Yuan, Liangqi Qu, Hongwei Li, Jia |
description | This paper presents a cost-effective pressure sensing system for object detection and identification. The pressure sensing system consists of a 27\times 27 piezoresistive sensor array made of carbon composite Velostat, a signal processing subsystem for signal scanning, amplification, registration, and enhancement. A convolutional neural network is used to classify various objects through the pressure signals produced and processed by the sensing array. Based on systematic characterizations and calibrations of sensing materials and system sensitivity, three experiment setups are established to recognize 10 objects to be detected. In series of experiments, a pressure image data set consisting of 32264 frames of images is first assembled to represent the 10 objects. Contrast enhancement algorithm was used to process the pressure image data set and combined with a convolutional neural network ResNet-PI to classify the 10 objects. For pressure images collected with the preestablished three experiment setups, an overall accuracy of 0.9854 is achieved. Compared with other systems based on Velostat sensor array, the system demonstrated in this study features improvements in structural robustness, detection repeatability and system reliability, suggesting its potential applications in emerging areas including human-computer interaction and smart health monitoring. |
doi_str_mv | 10.1109/JSEN.2021.3132793 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2021_3132793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9635813</ieee_id><sourcerecordid>2619022968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-899a7963786599f2af72aa2b970be0ed010a8d0ddca6f87e0f90bbcc1dbd1ae73</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeDV1ZrfJ7h5LqV8UC1bF27LZTCSlZutueui_NyHF07yH550ZHsauESaIoO9f1ovXCQeOE4GCSy1O2AizTKUop-q0zwLSqZBf5-wixg0AapnJEbv7pK2PrW2TNTXRh2QWgj0kVZdWxYZcm7yR899N3da-uWRnld1GujrOMft4WLzPn9Ll6vF5PlumjmvRpkprK3UupMozrStuK8mt5YWWUBBQCQhWlVCWzuaVkgSVhqJwDsuiREtSjNntsHcX_O-eYms2fh-a7qThOWrgXOeqo3CgXPAxBqrMLtQ_NhwMgumlmF6K6aWYo5SuczN0aiL657tfM4VC_AH2nl0W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619022968</pqid></control><display><type>article</type><title>Velostat Sensor Array for Object Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Yuan, Liangqi ; Qu, Hongwei ; Li, Jia</creator><creatorcontrib>Yuan, Liangqi ; Qu, Hongwei ; Li, Jia</creatorcontrib><description>This paper presents a cost-effective pressure sensing system for object detection and identification. The pressure sensing system consists of a <inline-formula> <tex-math notation="LaTeX">27\times 27 </tex-math></inline-formula> piezoresistive sensor array made of carbon composite Velostat, a signal processing subsystem for signal scanning, amplification, registration, and enhancement. A convolutional neural network is used to classify various objects through the pressure signals produced and processed by the sensing array. Based on systematic characterizations and calibrations of sensing materials and system sensitivity, three experiment setups are established to recognize 10 objects to be detected. In series of experiments, a pressure image data set consisting of 32264 frames of images is first assembled to represent the 10 objects. Contrast enhancement algorithm was used to process the pressure image data set and combined with a convolutional neural network ResNet-PI to classify the 10 objects. For pressure images collected with the preestablished three experiment setups, an overall accuracy of 0.9854 is achieved. Compared with other systems based on Velostat sensor array, the system demonstrated in this study features improvements in structural robustness, detection repeatability and system reliability, suggesting its potential applications in emerging areas including human-computer interaction and smart health monitoring.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3132793</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; crosstalk ; Datasets ; Image classification ; Image contrast ; Image enhancement ; machine learning ; Neural networks ; Object recognition ; Piezoresistance ; Pressure sensors ; Robot sensing systems ; Sensor arrays ; Sensor phenomena and characterization ; Sensor systems ; Sensors ; Signal processing ; Subsystems ; System reliability ; Velostat</subject><ispartof>IEEE sensors journal, 2022-01, Vol.22 (2), p.1692-1704</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-899a7963786599f2af72aa2b970be0ed010a8d0ddca6f87e0f90bbcc1dbd1ae73</citedby><cites>FETCH-LOGICAL-c293t-899a7963786599f2af72aa2b970be0ed010a8d0ddca6f87e0f90bbcc1dbd1ae73</cites><orcidid>0000-0002-9994-6773 ; 0000-0003-3443-4651</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9635813$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9635813$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuan, Liangqi</creatorcontrib><creatorcontrib>Qu, Hongwei</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><title>Velostat Sensor Array for Object Recognition</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This paper presents a cost-effective pressure sensing system for object detection and identification. The pressure sensing system consists of a <inline-formula> <tex-math notation="LaTeX">27\times 27 </tex-math></inline-formula> piezoresistive sensor array made of carbon composite Velostat, a signal processing subsystem for signal scanning, amplification, registration, and enhancement. A convolutional neural network is used to classify various objects through the pressure signals produced and processed by the sensing array. Based on systematic characterizations and calibrations of sensing materials and system sensitivity, three experiment setups are established to recognize 10 objects to be detected. In series of experiments, a pressure image data set consisting of 32264 frames of images is first assembled to represent the 10 objects. Contrast enhancement algorithm was used to process the pressure image data set and combined with a convolutional neural network ResNet-PI to classify the 10 objects. For pressure images collected with the preestablished three experiment setups, an overall accuracy of 0.9854 is achieved. Compared with other systems based on Velostat sensor array, the system demonstrated in this study features improvements in structural robustness, detection repeatability and system reliability, suggesting its potential applications in emerging areas including human-computer interaction and smart health monitoring.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>crosstalk</subject><subject>Datasets</subject><subject>Image classification</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>machine learning</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Piezoresistance</subject><subject>Pressure sensors</subject><subject>Robot sensing systems</subject><subject>Sensor arrays</subject><subject>Sensor phenomena and characterization</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Subsystems</subject><subject>System reliability</subject><subject>Velostat</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeDV1ZrfJ7h5LqV8UC1bF27LZTCSlZutueui_NyHF07yH550ZHsauESaIoO9f1ovXCQeOE4GCSy1O2AizTKUop-q0zwLSqZBf5-wixg0AapnJEbv7pK2PrW2TNTXRh2QWgj0kVZdWxYZcm7yR899N3da-uWRnld1GujrOMft4WLzPn9Ll6vF5PlumjmvRpkprK3UupMozrStuK8mt5YWWUBBQCQhWlVCWzuaVkgSVhqJwDsuiREtSjNntsHcX_O-eYms2fh-a7qThOWrgXOeqo3CgXPAxBqrMLtQ_NhwMgumlmF6K6aWYo5SuczN0aiL657tfM4VC_AH2nl0W</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Yuan, Liangqi</creator><creator>Qu, Hongwei</creator><creator>Li, Jia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9994-6773</orcidid><orcidid>https://orcid.org/0000-0003-3443-4651</orcidid></search><sort><creationdate>20220115</creationdate><title>Velostat Sensor Array for Object Recognition</title><author>Yuan, Liangqi ; Qu, Hongwei ; Li, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-899a7963786599f2af72aa2b970be0ed010a8d0ddca6f87e0f90bbcc1dbd1ae73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>crosstalk</topic><topic>Datasets</topic><topic>Image classification</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>machine learning</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Piezoresistance</topic><topic>Pressure sensors</topic><topic>Robot sensing systems</topic><topic>Sensor arrays</topic><topic>Sensor phenomena and characterization</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Subsystems</topic><topic>System reliability</topic><topic>Velostat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Liangqi</creatorcontrib><creatorcontrib>Qu, Hongwei</creatorcontrib><creatorcontrib>Li, Jia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuan, Liangqi</au><au>Qu, Hongwei</au><au>Li, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Velostat Sensor Array for Object Recognition</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-01-15</date><risdate>2022</risdate><volume>22</volume><issue>2</issue><spage>1692</spage><epage>1704</epage><pages>1692-1704</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This paper presents a cost-effective pressure sensing system for object detection and identification. The pressure sensing system consists of a <inline-formula> <tex-math notation="LaTeX">27\times 27 </tex-math></inline-formula> piezoresistive sensor array made of carbon composite Velostat, a signal processing subsystem for signal scanning, amplification, registration, and enhancement. A convolutional neural network is used to classify various objects through the pressure signals produced and processed by the sensing array. Based on systematic characterizations and calibrations of sensing materials and system sensitivity, three experiment setups are established to recognize 10 objects to be detected. In series of experiments, a pressure image data set consisting of 32264 frames of images is first assembled to represent the 10 objects. Contrast enhancement algorithm was used to process the pressure image data set and combined with a convolutional neural network ResNet-PI to classify the 10 objects. For pressure images collected with the preestablished three experiment setups, an overall accuracy of 0.9854 is achieved. Compared with other systems based on Velostat sensor array, the system demonstrated in this study features improvements in structural robustness, detection repeatability and system reliability, suggesting its potential applications in emerging areas including human-computer interaction and smart health monitoring.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3132793</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9994-6773</orcidid><orcidid>https://orcid.org/0000-0003-3443-4651</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2022-01, Vol.22 (2), p.1692-1704 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2021_3132793 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Artificial neural networks crosstalk Datasets Image classification Image contrast Image enhancement machine learning Neural networks Object recognition Piezoresistance Pressure sensors Robot sensing systems Sensor arrays Sensor phenomena and characterization Sensor systems Sensors Signal processing Subsystems System reliability Velostat |
title | Velostat Sensor Array for Object Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Velostat%20Sensor%20Array%20for%20Object%20Recognition&rft.jtitle=IEEE%20sensors%20journal&rft.au=Yuan,%20Liangqi&rft.date=2022-01-15&rft.volume=22&rft.issue=2&rft.spage=1692&rft.epage=1704&rft.pages=1692-1704&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3132793&rft_dat=%3Cproquest_RIE%3E2619022968%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619022968&rft_id=info:pmid/&rft_ieee_id=9635813&rfr_iscdi=true |