Time Series Data Processing for Classifying Wandering Patterns in People With Dementia

As the population ages, dementia has become one of the main health issues worldwide affecting the elderly. It is a disease related to the damage of the brain cells, causing memory loss, impairing of written and spoken communication skills, difficulty in performing previously routine tasks, as well a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2022-06, Vol.22 (11), p.10196-10206
Hauptverfasser: Diaz-Ramirez, Arnoldo, Miranda-Vega, Jesus E., Ramos-Rivera, Daniel, Rodriguez, Dalia Andrea, Flores-Fuentes, Wendy, Sergiyenko, Oleg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10206
container_issue 11
container_start_page 10196
container_title IEEE sensors journal
container_volume 22
creator Diaz-Ramirez, Arnoldo
Miranda-Vega, Jesus E.
Ramos-Rivera, Daniel
Rodriguez, Dalia Andrea
Flores-Fuentes, Wendy
Sergiyenko, Oleg
description As the population ages, dementia has become one of the main health issues worldwide affecting the elderly. It is a disease related to the damage of the brain cells, causing memory loss, impairing of written and spoken communication skills, difficulty in performing previously routine tasks, as well as personality and mood changes. There is no cure for dementia, but if diagnosed correctly, providing the proper treatment and support allows for a better quality of life for those affected by this disease. People with dementia tend to wander, and a relationship between the wandering pattern and the level of dementia has been established. In this paper, two-time series techniques, the autocorrelation function and the partial autocorrelation function used in conjunction with the machine learning algorithms, including linear discriminant analysis, multivariate Gaussian, adaptive boost, and k-nearest neighbors, were evaluated to classify wandering patterns in people affected by dementia. The main contribution of this work is the use of time-series data techniques and machine learning algorithms to classify wandering patterns. The use of smoothing filters and time series feature extraction techniques, used in combination with ML algorithms, showed a very good performance, with an accuracy greater than 90%.
doi_str_mv 10.1109/JSEN.2021.3123543
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2021_3123543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9590484</ieee_id><sourcerecordid>2672088960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-5c6a5e0121ae226f56eef1f67bd24cd9288e3dcbec60d823771fc23401d6ef623</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_NY_KYpfThg6KFVusupJkbTWlnajJd9N87Q4urew585x44CN1SMqCUFA-v8_HbgBFGB5wyLnJ-hnpUCJ1RlevzTnOS5Vx9XaKrlNaE0EIJ1UOfi7AFPIcYIOGRbSyexdpBSqH6xr6OeLixrfGHzi9tVbZkq2a2aSBWCYcKz6DebQAvQ_ODR7CFqgn2Gl14u0lwc7p99DEZL4bP2fT96WX4OM0cI7rJhJNWAKGMWmBMeiEBPPVSrUqWu7JgWgMv3QqcJKVmXCnqHeM5oaUELxnvo_vj312sf_eQGrOu97FqKw2Tqu3QhSQtRY-Ui3VKEbzZxbC18WAoMd18ppvPdPOZ03xt5u6YCQDwzxeiILnO-R8G0Guz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672088960</pqid></control><display><type>article</type><title>Time Series Data Processing for Classifying Wandering Patterns in People With Dementia</title><source>IEEE Electronic Library (IEL)</source><creator>Diaz-Ramirez, Arnoldo ; Miranda-Vega, Jesus E. ; Ramos-Rivera, Daniel ; Rodriguez, Dalia Andrea ; Flores-Fuentes, Wendy ; Sergiyenko, Oleg</creator><creatorcontrib>Diaz-Ramirez, Arnoldo ; Miranda-Vega, Jesus E. ; Ramos-Rivera, Daniel ; Rodriguez, Dalia Andrea ; Flores-Fuentes, Wendy ; Sergiyenko, Oleg</creatorcontrib><description>As the population ages, dementia has become one of the main health issues worldwide affecting the elderly. It is a disease related to the damage of the brain cells, causing memory loss, impairing of written and spoken communication skills, difficulty in performing previously routine tasks, as well as personality and mood changes. There is no cure for dementia, but if diagnosed correctly, providing the proper treatment and support allows for a better quality of life for those affected by this disease. People with dementia tend to wander, and a relationship between the wandering pattern and the level of dementia has been established. In this paper, two-time series techniques, the autocorrelation function and the partial autocorrelation function used in conjunction with the machine learning algorithms, including linear discriminant analysis, multivariate Gaussian, adaptive boost, and k-nearest neighbors, were evaluated to classify wandering patterns in people affected by dementia. The main contribution of this work is the use of time-series data techniques and machine learning algorithms to classify wandering patterns. The use of smoothing filters and time series feature extraction techniques, used in combination with ML algorithms, showed a very good performance, with an accuracy greater than 90%.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3123543</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Autocorrelation functions ; Brain damage ; Classification ; Classification algorithms ; Communication skills ; Data processing ; Dementia ; Discriminant analysis ; Feature extraction ; Machine learning ; Proposals ; Sensors ; Support vector machines ; Time series ; Time series analysis ; time series data processing ; Trajectory ; wandering patterns</subject><ispartof>IEEE sensors journal, 2022-06, Vol.22 (11), p.10196-10206</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208t-5c6a5e0121ae226f56eef1f67bd24cd9288e3dcbec60d823771fc23401d6ef623</citedby><cites>FETCH-LOGICAL-c208t-5c6a5e0121ae226f56eef1f67bd24cd9288e3dcbec60d823771fc23401d6ef623</cites><orcidid>0000-0002-6188-0756 ; 0000-0003-0618-0455 ; 0000-0002-1477-7449 ; 0000-0003-2453-2880 ; 0000-0003-4270-6872 ; 0000-0002-6682-3742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9590484$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9590484$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Diaz-Ramirez, Arnoldo</creatorcontrib><creatorcontrib>Miranda-Vega, Jesus E.</creatorcontrib><creatorcontrib>Ramos-Rivera, Daniel</creatorcontrib><creatorcontrib>Rodriguez, Dalia Andrea</creatorcontrib><creatorcontrib>Flores-Fuentes, Wendy</creatorcontrib><creatorcontrib>Sergiyenko, Oleg</creatorcontrib><title>Time Series Data Processing for Classifying Wandering Patterns in People With Dementia</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>As the population ages, dementia has become one of the main health issues worldwide affecting the elderly. It is a disease related to the damage of the brain cells, causing memory loss, impairing of written and spoken communication skills, difficulty in performing previously routine tasks, as well as personality and mood changes. There is no cure for dementia, but if diagnosed correctly, providing the proper treatment and support allows for a better quality of life for those affected by this disease. People with dementia tend to wander, and a relationship between the wandering pattern and the level of dementia has been established. In this paper, two-time series techniques, the autocorrelation function and the partial autocorrelation function used in conjunction with the machine learning algorithms, including linear discriminant analysis, multivariate Gaussian, adaptive boost, and k-nearest neighbors, were evaluated to classify wandering patterns in people affected by dementia. The main contribution of this work is the use of time-series data techniques and machine learning algorithms to classify wandering patterns. The use of smoothing filters and time series feature extraction techniques, used in combination with ML algorithms, showed a very good performance, with an accuracy greater than 90%.</description><subject>Algorithms</subject><subject>Autocorrelation functions</subject><subject>Brain damage</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Communication skills</subject><subject>Data processing</subject><subject>Dementia</subject><subject>Discriminant analysis</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Proposals</subject><subject>Sensors</subject><subject>Support vector machines</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>time series data processing</subject><subject>Trajectory</subject><subject>wandering patterns</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_NY_KYpfThg6KFVusupJkbTWlnajJd9N87Q4urew585x44CN1SMqCUFA-v8_HbgBFGB5wyLnJ-hnpUCJ1RlevzTnOS5Vx9XaKrlNaE0EIJ1UOfi7AFPIcYIOGRbSyexdpBSqH6xr6OeLixrfGHzi9tVbZkq2a2aSBWCYcKz6DebQAvQ_ODR7CFqgn2Gl14u0lwc7p99DEZL4bP2fT96WX4OM0cI7rJhJNWAKGMWmBMeiEBPPVSrUqWu7JgWgMv3QqcJKVmXCnqHeM5oaUELxnvo_vj312sf_eQGrOu97FqKw2Tqu3QhSQtRY-Ui3VKEbzZxbC18WAoMd18ppvPdPOZ03xt5u6YCQDwzxeiILnO-R8G0Guz</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Diaz-Ramirez, Arnoldo</creator><creator>Miranda-Vega, Jesus E.</creator><creator>Ramos-Rivera, Daniel</creator><creator>Rodriguez, Dalia Andrea</creator><creator>Flores-Fuentes, Wendy</creator><creator>Sergiyenko, Oleg</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6188-0756</orcidid><orcidid>https://orcid.org/0000-0003-0618-0455</orcidid><orcidid>https://orcid.org/0000-0002-1477-7449</orcidid><orcidid>https://orcid.org/0000-0003-2453-2880</orcidid><orcidid>https://orcid.org/0000-0003-4270-6872</orcidid><orcidid>https://orcid.org/0000-0002-6682-3742</orcidid></search><sort><creationdate>20220601</creationdate><title>Time Series Data Processing for Classifying Wandering Patterns in People With Dementia</title><author>Diaz-Ramirez, Arnoldo ; Miranda-Vega, Jesus E. ; Ramos-Rivera, Daniel ; Rodriguez, Dalia Andrea ; Flores-Fuentes, Wendy ; Sergiyenko, Oleg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-5c6a5e0121ae226f56eef1f67bd24cd9288e3dcbec60d823771fc23401d6ef623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Autocorrelation functions</topic><topic>Brain damage</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Communication skills</topic><topic>Data processing</topic><topic>Dementia</topic><topic>Discriminant analysis</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Proposals</topic><topic>Sensors</topic><topic>Support vector machines</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>time series data processing</topic><topic>Trajectory</topic><topic>wandering patterns</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diaz-Ramirez, Arnoldo</creatorcontrib><creatorcontrib>Miranda-Vega, Jesus E.</creatorcontrib><creatorcontrib>Ramos-Rivera, Daniel</creatorcontrib><creatorcontrib>Rodriguez, Dalia Andrea</creatorcontrib><creatorcontrib>Flores-Fuentes, Wendy</creatorcontrib><creatorcontrib>Sergiyenko, Oleg</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Diaz-Ramirez, Arnoldo</au><au>Miranda-Vega, Jesus E.</au><au>Ramos-Rivera, Daniel</au><au>Rodriguez, Dalia Andrea</au><au>Flores-Fuentes, Wendy</au><au>Sergiyenko, Oleg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Series Data Processing for Classifying Wandering Patterns in People With Dementia</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>22</volume><issue>11</issue><spage>10196</spage><epage>10206</epage><pages>10196-10206</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>As the population ages, dementia has become one of the main health issues worldwide affecting the elderly. It is a disease related to the damage of the brain cells, causing memory loss, impairing of written and spoken communication skills, difficulty in performing previously routine tasks, as well as personality and mood changes. There is no cure for dementia, but if diagnosed correctly, providing the proper treatment and support allows for a better quality of life for those affected by this disease. People with dementia tend to wander, and a relationship between the wandering pattern and the level of dementia has been established. In this paper, two-time series techniques, the autocorrelation function and the partial autocorrelation function used in conjunction with the machine learning algorithms, including linear discriminant analysis, multivariate Gaussian, adaptive boost, and k-nearest neighbors, were evaluated to classify wandering patterns in people affected by dementia. The main contribution of this work is the use of time-series data techniques and machine learning algorithms to classify wandering patterns. The use of smoothing filters and time series feature extraction techniques, used in combination with ML algorithms, showed a very good performance, with an accuracy greater than 90%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3123543</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6188-0756</orcidid><orcidid>https://orcid.org/0000-0003-0618-0455</orcidid><orcidid>https://orcid.org/0000-0002-1477-7449</orcidid><orcidid>https://orcid.org/0000-0003-2453-2880</orcidid><orcidid>https://orcid.org/0000-0003-4270-6872</orcidid><orcidid>https://orcid.org/0000-0002-6682-3742</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2022-06, Vol.22 (11), p.10196-10206
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2021_3123543
source IEEE Electronic Library (IEL)
subjects Algorithms
Autocorrelation functions
Brain damage
Classification
Classification algorithms
Communication skills
Data processing
Dementia
Discriminant analysis
Feature extraction
Machine learning
Proposals
Sensors
Support vector machines
Time series
Time series analysis
time series data processing
Trajectory
wandering patterns
title Time Series Data Processing for Classifying Wandering Patterns in People With Dementia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Series%20Data%20Processing%20for%20Classifying%20Wandering%20Patterns%20in%20People%20With%20Dementia&rft.jtitle=IEEE%20sensors%20journal&rft.au=Diaz-Ramirez,%20Arnoldo&rft.date=2022-06-01&rft.volume=22&rft.issue=11&rft.spage=10196&rft.epage=10206&rft.pages=10196-10206&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3123543&rft_dat=%3Cproquest_RIE%3E2672088960%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672088960&rft_id=info:pmid/&rft_ieee_id=9590484&rfr_iscdi=true