Time Series Data Processing for Classifying Wandering Patterns in People With Dementia
As the population ages, dementia has become one of the main health issues worldwide affecting the elderly. It is a disease related to the damage of the brain cells, causing memory loss, impairing of written and spoken communication skills, difficulty in performing previously routine tasks, as well a...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2022-06, Vol.22 (11), p.10196-10206 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10206 |
---|---|
container_issue | 11 |
container_start_page | 10196 |
container_title | IEEE sensors journal |
container_volume | 22 |
creator | Diaz-Ramirez, Arnoldo Miranda-Vega, Jesus E. Ramos-Rivera, Daniel Rodriguez, Dalia Andrea Flores-Fuentes, Wendy Sergiyenko, Oleg |
description | As the population ages, dementia has become one of the main health issues worldwide affecting the elderly. It is a disease related to the damage of the brain cells, causing memory loss, impairing of written and spoken communication skills, difficulty in performing previously routine tasks, as well as personality and mood changes. There is no cure for dementia, but if diagnosed correctly, providing the proper treatment and support allows for a better quality of life for those affected by this disease. People with dementia tend to wander, and a relationship between the wandering pattern and the level of dementia has been established. In this paper, two-time series techniques, the autocorrelation function and the partial autocorrelation function used in conjunction with the machine learning algorithms, including linear discriminant analysis, multivariate Gaussian, adaptive boost, and k-nearest neighbors, were evaluated to classify wandering patterns in people affected by dementia. The main contribution of this work is the use of time-series data techniques and machine learning algorithms to classify wandering patterns. The use of smoothing filters and time series feature extraction techniques, used in combination with ML algorithms, showed a very good performance, with an accuracy greater than 90%. |
doi_str_mv | 10.1109/JSEN.2021.3123543 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2021_3123543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9590484</ieee_id><sourcerecordid>2672088960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-5c6a5e0121ae226f56eef1f67bd24cd9288e3dcbec60d823771fc23401d6ef623</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_NY_KYpfThg6KFVusupJkbTWlnajJd9N87Q4urew585x44CN1SMqCUFA-v8_HbgBFGB5wyLnJ-hnpUCJ1RlevzTnOS5Vx9XaKrlNaE0EIJ1UOfi7AFPIcYIOGRbSyexdpBSqH6xr6OeLixrfGHzi9tVbZkq2a2aSBWCYcKz6DebQAvQ_ODR7CFqgn2Gl14u0lwc7p99DEZL4bP2fT96WX4OM0cI7rJhJNWAKGMWmBMeiEBPPVSrUqWu7JgWgMv3QqcJKVmXCnqHeM5oaUELxnvo_vj312sf_eQGrOu97FqKw2Tqu3QhSQtRY-Ui3VKEbzZxbC18WAoMd18ppvPdPOZ03xt5u6YCQDwzxeiILnO-R8G0Guz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672088960</pqid></control><display><type>article</type><title>Time Series Data Processing for Classifying Wandering Patterns in People With Dementia</title><source>IEEE Electronic Library (IEL)</source><creator>Diaz-Ramirez, Arnoldo ; Miranda-Vega, Jesus E. ; Ramos-Rivera, Daniel ; Rodriguez, Dalia Andrea ; Flores-Fuentes, Wendy ; Sergiyenko, Oleg</creator><creatorcontrib>Diaz-Ramirez, Arnoldo ; Miranda-Vega, Jesus E. ; Ramos-Rivera, Daniel ; Rodriguez, Dalia Andrea ; Flores-Fuentes, Wendy ; Sergiyenko, Oleg</creatorcontrib><description>As the population ages, dementia has become one of the main health issues worldwide affecting the elderly. It is a disease related to the damage of the brain cells, causing memory loss, impairing of written and spoken communication skills, difficulty in performing previously routine tasks, as well as personality and mood changes. There is no cure for dementia, but if diagnosed correctly, providing the proper treatment and support allows for a better quality of life for those affected by this disease. People with dementia tend to wander, and a relationship between the wandering pattern and the level of dementia has been established. In this paper, two-time series techniques, the autocorrelation function and the partial autocorrelation function used in conjunction with the machine learning algorithms, including linear discriminant analysis, multivariate Gaussian, adaptive boost, and k-nearest neighbors, were evaluated to classify wandering patterns in people affected by dementia. The main contribution of this work is the use of time-series data techniques and machine learning algorithms to classify wandering patterns. The use of smoothing filters and time series feature extraction techniques, used in combination with ML algorithms, showed a very good performance, with an accuracy greater than 90%.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3123543</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Autocorrelation functions ; Brain damage ; Classification ; Classification algorithms ; Communication skills ; Data processing ; Dementia ; Discriminant analysis ; Feature extraction ; Machine learning ; Proposals ; Sensors ; Support vector machines ; Time series ; Time series analysis ; time series data processing ; Trajectory ; wandering patterns</subject><ispartof>IEEE sensors journal, 2022-06, Vol.22 (11), p.10196-10206</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208t-5c6a5e0121ae226f56eef1f67bd24cd9288e3dcbec60d823771fc23401d6ef623</citedby><cites>FETCH-LOGICAL-c208t-5c6a5e0121ae226f56eef1f67bd24cd9288e3dcbec60d823771fc23401d6ef623</cites><orcidid>0000-0002-6188-0756 ; 0000-0003-0618-0455 ; 0000-0002-1477-7449 ; 0000-0003-2453-2880 ; 0000-0003-4270-6872 ; 0000-0002-6682-3742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9590484$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9590484$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Diaz-Ramirez, Arnoldo</creatorcontrib><creatorcontrib>Miranda-Vega, Jesus E.</creatorcontrib><creatorcontrib>Ramos-Rivera, Daniel</creatorcontrib><creatorcontrib>Rodriguez, Dalia Andrea</creatorcontrib><creatorcontrib>Flores-Fuentes, Wendy</creatorcontrib><creatorcontrib>Sergiyenko, Oleg</creatorcontrib><title>Time Series Data Processing for Classifying Wandering Patterns in People With Dementia</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>As the population ages, dementia has become one of the main health issues worldwide affecting the elderly. It is a disease related to the damage of the brain cells, causing memory loss, impairing of written and spoken communication skills, difficulty in performing previously routine tasks, as well as personality and mood changes. There is no cure for dementia, but if diagnosed correctly, providing the proper treatment and support allows for a better quality of life for those affected by this disease. People with dementia tend to wander, and a relationship between the wandering pattern and the level of dementia has been established. In this paper, two-time series techniques, the autocorrelation function and the partial autocorrelation function used in conjunction with the machine learning algorithms, including linear discriminant analysis, multivariate Gaussian, adaptive boost, and k-nearest neighbors, were evaluated to classify wandering patterns in people affected by dementia. The main contribution of this work is the use of time-series data techniques and machine learning algorithms to classify wandering patterns. The use of smoothing filters and time series feature extraction techniques, used in combination with ML algorithms, showed a very good performance, with an accuracy greater than 90%.</description><subject>Algorithms</subject><subject>Autocorrelation functions</subject><subject>Brain damage</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Communication skills</subject><subject>Data processing</subject><subject>Dementia</subject><subject>Discriminant analysis</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Proposals</subject><subject>Sensors</subject><subject>Support vector machines</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>time series data processing</subject><subject>Trajectory</subject><subject>wandering patterns</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_NY_KYpfThg6KFVusupJkbTWlnajJd9N87Q4urew585x44CN1SMqCUFA-v8_HbgBFGB5wyLnJ-hnpUCJ1RlevzTnOS5Vx9XaKrlNaE0EIJ1UOfi7AFPIcYIOGRbSyexdpBSqH6xr6OeLixrfGHzi9tVbZkq2a2aSBWCYcKz6DebQAvQ_ODR7CFqgn2Gl14u0lwc7p99DEZL4bP2fT96WX4OM0cI7rJhJNWAKGMWmBMeiEBPPVSrUqWu7JgWgMv3QqcJKVmXCnqHeM5oaUELxnvo_vj312sf_eQGrOu97FqKw2Tqu3QhSQtRY-Ui3VKEbzZxbC18WAoMd18ppvPdPOZ03xt5u6YCQDwzxeiILnO-R8G0Guz</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Diaz-Ramirez, Arnoldo</creator><creator>Miranda-Vega, Jesus E.</creator><creator>Ramos-Rivera, Daniel</creator><creator>Rodriguez, Dalia Andrea</creator><creator>Flores-Fuentes, Wendy</creator><creator>Sergiyenko, Oleg</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6188-0756</orcidid><orcidid>https://orcid.org/0000-0003-0618-0455</orcidid><orcidid>https://orcid.org/0000-0002-1477-7449</orcidid><orcidid>https://orcid.org/0000-0003-2453-2880</orcidid><orcidid>https://orcid.org/0000-0003-4270-6872</orcidid><orcidid>https://orcid.org/0000-0002-6682-3742</orcidid></search><sort><creationdate>20220601</creationdate><title>Time Series Data Processing for Classifying Wandering Patterns in People With Dementia</title><author>Diaz-Ramirez, Arnoldo ; Miranda-Vega, Jesus E. ; Ramos-Rivera, Daniel ; Rodriguez, Dalia Andrea ; Flores-Fuentes, Wendy ; Sergiyenko, Oleg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-5c6a5e0121ae226f56eef1f67bd24cd9288e3dcbec60d823771fc23401d6ef623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Autocorrelation functions</topic><topic>Brain damage</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Communication skills</topic><topic>Data processing</topic><topic>Dementia</topic><topic>Discriminant analysis</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Proposals</topic><topic>Sensors</topic><topic>Support vector machines</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>time series data processing</topic><topic>Trajectory</topic><topic>wandering patterns</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diaz-Ramirez, Arnoldo</creatorcontrib><creatorcontrib>Miranda-Vega, Jesus E.</creatorcontrib><creatorcontrib>Ramos-Rivera, Daniel</creatorcontrib><creatorcontrib>Rodriguez, Dalia Andrea</creatorcontrib><creatorcontrib>Flores-Fuentes, Wendy</creatorcontrib><creatorcontrib>Sergiyenko, Oleg</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Diaz-Ramirez, Arnoldo</au><au>Miranda-Vega, Jesus E.</au><au>Ramos-Rivera, Daniel</au><au>Rodriguez, Dalia Andrea</au><au>Flores-Fuentes, Wendy</au><au>Sergiyenko, Oleg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Series Data Processing for Classifying Wandering Patterns in People With Dementia</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>22</volume><issue>11</issue><spage>10196</spage><epage>10206</epage><pages>10196-10206</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>As the population ages, dementia has become one of the main health issues worldwide affecting the elderly. It is a disease related to the damage of the brain cells, causing memory loss, impairing of written and spoken communication skills, difficulty in performing previously routine tasks, as well as personality and mood changes. There is no cure for dementia, but if diagnosed correctly, providing the proper treatment and support allows for a better quality of life for those affected by this disease. People with dementia tend to wander, and a relationship between the wandering pattern and the level of dementia has been established. In this paper, two-time series techniques, the autocorrelation function and the partial autocorrelation function used in conjunction with the machine learning algorithms, including linear discriminant analysis, multivariate Gaussian, adaptive boost, and k-nearest neighbors, were evaluated to classify wandering patterns in people affected by dementia. The main contribution of this work is the use of time-series data techniques and machine learning algorithms to classify wandering patterns. The use of smoothing filters and time series feature extraction techniques, used in combination with ML algorithms, showed a very good performance, with an accuracy greater than 90%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3123543</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6188-0756</orcidid><orcidid>https://orcid.org/0000-0003-0618-0455</orcidid><orcidid>https://orcid.org/0000-0002-1477-7449</orcidid><orcidid>https://orcid.org/0000-0003-2453-2880</orcidid><orcidid>https://orcid.org/0000-0003-4270-6872</orcidid><orcidid>https://orcid.org/0000-0002-6682-3742</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2022-06, Vol.22 (11), p.10196-10206 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2021_3123543 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Autocorrelation functions Brain damage Classification Classification algorithms Communication skills Data processing Dementia Discriminant analysis Feature extraction Machine learning Proposals Sensors Support vector machines Time series Time series analysis time series data processing Trajectory wandering patterns |
title | Time Series Data Processing for Classifying Wandering Patterns in People With Dementia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A48%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Series%20Data%20Processing%20for%20Classifying%20Wandering%20Patterns%20in%20People%20With%20Dementia&rft.jtitle=IEEE%20sensors%20journal&rft.au=Diaz-Ramirez,%20Arnoldo&rft.date=2022-06-01&rft.volume=22&rft.issue=11&rft.spage=10196&rft.epage=10206&rft.pages=10196-10206&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3123543&rft_dat=%3Cproquest_RIE%3E2672088960%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672088960&rft_id=info:pmid/&rft_ieee_id=9590484&rfr_iscdi=true |