Developing a Novel Real-Time Indoor Positioning System Based on BLE Beacons and Smartphone Sensors

In this work, we study the problem of fusing one Pedestrian-Dead-Reckoning-based (PDR-based) position measurement and one instant Received-Signal-Strength-based (RSS-based) position measurement. This situation can arise in a smartphone-based indoor positioning system when we want to locate a moving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-10, Vol.21 (20), p.23055-23068
Hauptverfasser: Dinh, Thai-Mai Thi, Duong, Ngoc-Son, Nguyen, Quoc-Tuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23068
container_issue 20
container_start_page 23055
container_title IEEE sensors journal
container_volume 21
creator Dinh, Thai-Mai Thi
Duong, Ngoc-Son
Nguyen, Quoc-Tuan
description In this work, we study the problem of fusing one Pedestrian-Dead-Reckoning-based (PDR-based) position measurement and one instant Received-Signal-Strength-based (RSS-based) position measurement. This situation can arise in a smartphone-based indoor positioning system when we want to locate a moving user in real-time with sustainable accuracy, but the RSS sampling ability of smartphones is limited; for example, one RSS sample per second. Firstly, by investigating RSS's heterogeneity, we offer a solution for RSS-based continuous positioning problems under a low RSS sampling rate that satisfies real-time requirements. Secondly, we propose a method to improve accuracy for the RSS-based position estimation method, i.e., multilateration using Least Square Estimation. We consider PDR-based and improved RSS-based positions both have Gaussian uncertainty due to initial position plus drifting and RSS-to-distance conversion, respectively. Then, the Kalman filter will fuse two kinds of Gaussian distribution to produce more precise positions. The method is intended to design a real-time system for locating a moving target. Experiments are conducted in real indoor space with a commodity device. Its results show that our proposed solution is highly accurate and feasible in actual deployment.
doi_str_mv 10.1109/JSEN.2021.3106019
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2021_3106019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9517109</ieee_id><sourcerecordid>2583640405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-180fbc9b90082fc8f0e2229b78312744af11cf5d015b62f0bdc600fb133f786d3</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhoMoWKsPIF4WPKfO7CbZ5Ghr1UqpYip4C5tkVlPa3bqbCn17E1o8zQx8_8zwBcE1wggRsruXfLoYceA4EggJYHYSDDCO0xBllJ72vYAwEvLzPLjwfgUdIWM5CMoH-qW13Tbmiym2sN3A3kmtw2WzITYztbWOvVnftI01PZTvfUsbNlaeamYNG8-nbEyqssYzZWqWb5Rrt9_WEMvJeOv8ZXCm1drT1bEOg4_H6XLyHM5fn2aT-3lY8Uy0IaagyyorM4CU6yrVQJzzrJSpQC6jSGnESsc1YFwmXENZVwl0ERRCyzSpxTC4PezdOvuzI98WK7tzpjtZ8DgVSQQRxB2FB6py1ntHuti6pvt5XyAUvcqiV1n0Koujyi5zc8g0RPTPZzHKjhd_-ntuzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583640405</pqid></control><display><type>article</type><title>Developing a Novel Real-Time Indoor Positioning System Based on BLE Beacons and Smartphone Sensors</title><source>IEEE Electronic Library (IEL)</source><creator>Dinh, Thai-Mai Thi ; Duong, Ngoc-Son ; Nguyen, Quoc-Tuan</creator><creatorcontrib>Dinh, Thai-Mai Thi ; Duong, Ngoc-Son ; Nguyen, Quoc-Tuan</creatorcontrib><description>In this work, we study the problem of fusing one Pedestrian-Dead-Reckoning-based (PDR-based) position measurement and one instant Received-Signal-Strength-based (RSS-based) position measurement. This situation can arise in a smartphone-based indoor positioning system when we want to locate a moving user in real-time with sustainable accuracy, but the RSS sampling ability of smartphones is limited; for example, one RSS sample per second. Firstly, by investigating RSS's heterogeneity, we offer a solution for RSS-based continuous positioning problems under a low RSS sampling rate that satisfies real-time requirements. Secondly, we propose a method to improve accuracy for the RSS-based position estimation method, i.e., multilateration using Least Square Estimation. We consider PDR-based and improved RSS-based positions both have Gaussian uncertainty due to initial position plus drifting and RSS-to-distance conversion, respectively. Then, the Kalman filter will fuse two kinds of Gaussian distribution to produce more precise positions. The method is intended to design a real-time system for locating a moving target. Experiments are conducted in real indoor space with a commodity device. Its results show that our proposed solution is highly accurate and feasible in actual deployment.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3106019</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bayes fusion ; BLE beacon ; Bluetooth Low Energy ; Dead reckoning ; Estimation ; Heterogeneity ; indoor localization ; indoor positioning system ; Kalman filters ; least square estimation ; Location awareness ; Moving targets ; Normal distribution ; pedestrian dead reckoning ; Position measurement ; Real time ; Real-time systems ; Sampling ; Sensor systems ; Sensors ; Smartphones ; Uncertainty ; Wireless fidelity</subject><ispartof>IEEE sensors journal, 2021-10, Vol.21 (20), p.23055-23068</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-180fbc9b90082fc8f0e2229b78312744af11cf5d015b62f0bdc600fb133f786d3</citedby><cites>FETCH-LOGICAL-c293t-180fbc9b90082fc8f0e2229b78312744af11cf5d015b62f0bdc600fb133f786d3</cites><orcidid>0000-0003-2164-2419 ; 0000-0001-8157-3123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9517109$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9517109$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dinh, Thai-Mai Thi</creatorcontrib><creatorcontrib>Duong, Ngoc-Son</creatorcontrib><creatorcontrib>Nguyen, Quoc-Tuan</creatorcontrib><title>Developing a Novel Real-Time Indoor Positioning System Based on BLE Beacons and Smartphone Sensors</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this work, we study the problem of fusing one Pedestrian-Dead-Reckoning-based (PDR-based) position measurement and one instant Received-Signal-Strength-based (RSS-based) position measurement. This situation can arise in a smartphone-based indoor positioning system when we want to locate a moving user in real-time with sustainable accuracy, but the RSS sampling ability of smartphones is limited; for example, one RSS sample per second. Firstly, by investigating RSS's heterogeneity, we offer a solution for RSS-based continuous positioning problems under a low RSS sampling rate that satisfies real-time requirements. Secondly, we propose a method to improve accuracy for the RSS-based position estimation method, i.e., multilateration using Least Square Estimation. We consider PDR-based and improved RSS-based positions both have Gaussian uncertainty due to initial position plus drifting and RSS-to-distance conversion, respectively. Then, the Kalman filter will fuse two kinds of Gaussian distribution to produce more precise positions. The method is intended to design a real-time system for locating a moving target. Experiments are conducted in real indoor space with a commodity device. Its results show that our proposed solution is highly accurate and feasible in actual deployment.</description><subject>Bayes fusion</subject><subject>BLE beacon</subject><subject>Bluetooth Low Energy</subject><subject>Dead reckoning</subject><subject>Estimation</subject><subject>Heterogeneity</subject><subject>indoor localization</subject><subject>indoor positioning system</subject><subject>Kalman filters</subject><subject>least square estimation</subject><subject>Location awareness</subject><subject>Moving targets</subject><subject>Normal distribution</subject><subject>pedestrian dead reckoning</subject><subject>Position measurement</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Sampling</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Smartphones</subject><subject>Uncertainty</subject><subject>Wireless fidelity</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKw0AQhoMoWKsPIF4WPKfO7CbZ5Ghr1UqpYip4C5tkVlPa3bqbCn17E1o8zQx8_8zwBcE1wggRsruXfLoYceA4EggJYHYSDDCO0xBllJ72vYAwEvLzPLjwfgUdIWM5CMoH-qW13Tbmiym2sN3A3kmtw2WzITYztbWOvVnftI01PZTvfUsbNlaeamYNG8-nbEyqssYzZWqWb5Rrt9_WEMvJeOv8ZXCm1drT1bEOg4_H6XLyHM5fn2aT-3lY8Uy0IaagyyorM4CU6yrVQJzzrJSpQC6jSGnESsc1YFwmXENZVwl0ERRCyzSpxTC4PezdOvuzI98WK7tzpjtZ8DgVSQQRxB2FB6py1ntHuti6pvt5XyAUvcqiV1n0Koujyi5zc8g0RPTPZzHKjhd_-ntuzg</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Dinh, Thai-Mai Thi</creator><creator>Duong, Ngoc-Son</creator><creator>Nguyen, Quoc-Tuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2164-2419</orcidid><orcidid>https://orcid.org/0000-0001-8157-3123</orcidid></search><sort><creationdate>20211015</creationdate><title>Developing a Novel Real-Time Indoor Positioning System Based on BLE Beacons and Smartphone Sensors</title><author>Dinh, Thai-Mai Thi ; Duong, Ngoc-Son ; Nguyen, Quoc-Tuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-180fbc9b90082fc8f0e2229b78312744af11cf5d015b62f0bdc600fb133f786d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayes fusion</topic><topic>BLE beacon</topic><topic>Bluetooth Low Energy</topic><topic>Dead reckoning</topic><topic>Estimation</topic><topic>Heterogeneity</topic><topic>indoor localization</topic><topic>indoor positioning system</topic><topic>Kalman filters</topic><topic>least square estimation</topic><topic>Location awareness</topic><topic>Moving targets</topic><topic>Normal distribution</topic><topic>pedestrian dead reckoning</topic><topic>Position measurement</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Sampling</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Smartphones</topic><topic>Uncertainty</topic><topic>Wireless fidelity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dinh, Thai-Mai Thi</creatorcontrib><creatorcontrib>Duong, Ngoc-Son</creatorcontrib><creatorcontrib>Nguyen, Quoc-Tuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dinh, Thai-Mai Thi</au><au>Duong, Ngoc-Son</au><au>Nguyen, Quoc-Tuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing a Novel Real-Time Indoor Positioning System Based on BLE Beacons and Smartphone Sensors</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-10-15</date><risdate>2021</risdate><volume>21</volume><issue>20</issue><spage>23055</spage><epage>23068</epage><pages>23055-23068</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this work, we study the problem of fusing one Pedestrian-Dead-Reckoning-based (PDR-based) position measurement and one instant Received-Signal-Strength-based (RSS-based) position measurement. This situation can arise in a smartphone-based indoor positioning system when we want to locate a moving user in real-time with sustainable accuracy, but the RSS sampling ability of smartphones is limited; for example, one RSS sample per second. Firstly, by investigating RSS's heterogeneity, we offer a solution for RSS-based continuous positioning problems under a low RSS sampling rate that satisfies real-time requirements. Secondly, we propose a method to improve accuracy for the RSS-based position estimation method, i.e., multilateration using Least Square Estimation. We consider PDR-based and improved RSS-based positions both have Gaussian uncertainty due to initial position plus drifting and RSS-to-distance conversion, respectively. Then, the Kalman filter will fuse two kinds of Gaussian distribution to produce more precise positions. The method is intended to design a real-time system for locating a moving target. Experiments are conducted in real indoor space with a commodity device. Its results show that our proposed solution is highly accurate and feasible in actual deployment.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3106019</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2164-2419</orcidid><orcidid>https://orcid.org/0000-0001-8157-3123</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-10, Vol.21 (20), p.23055-23068
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2021_3106019
source IEEE Electronic Library (IEL)
subjects Bayes fusion
BLE beacon
Bluetooth Low Energy
Dead reckoning
Estimation
Heterogeneity
indoor localization
indoor positioning system
Kalman filters
least square estimation
Location awareness
Moving targets
Normal distribution
pedestrian dead reckoning
Position measurement
Real time
Real-time systems
Sampling
Sensor systems
Sensors
Smartphones
Uncertainty
Wireless fidelity
title Developing a Novel Real-Time Indoor Positioning System Based on BLE Beacons and Smartphone Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20a%20Novel%20Real-Time%20Indoor%20Positioning%20System%20Based%20on%20BLE%20Beacons%20and%20Smartphone%20Sensors&rft.jtitle=IEEE%20sensors%20journal&rft.au=Dinh,%20Thai-Mai%20Thi&rft.date=2021-10-15&rft.volume=21&rft.issue=20&rft.spage=23055&rft.epage=23068&rft.pages=23055-23068&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3106019&rft_dat=%3Cproquest_RIE%3E2583640405%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583640405&rft_id=info:pmid/&rft_ieee_id=9517109&rfr_iscdi=true