Location-Dependent Performance of Large-Area Piezoresistive Tactile Sensors Based on Electrical Impedance Tomography

The technique of electrical impedance tomography (EIT) has been recognized as a promising method to design tactile sensors with continuous sensing capability over a large area. The mechanism of electrical impedance tomography allows reconstructing tactile information within the sensing area based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-10, Vol.21 (19), p.21622-21630
Hauptverfasser: Chen, Ying, Liu, Haibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21630
container_issue 19
container_start_page 21622
container_title IEEE sensors journal
container_volume 21
creator Chen, Ying
Liu, Haibin
description The technique of electrical impedance tomography (EIT) has been recognized as a promising method to design tactile sensors with continuous sensing capability over a large area. The mechanism of electrical impedance tomography allows reconstructing tactile information within the sensing area based on measurements made only at the boundary. However, spatial performance of EIT-based tactile sensors has demonstrated location dependency, which severely affects correct interpretation of tactile stimuli. Here, we analyzed the effect of hyperparameter on the spatial performance, in terms of amplitude, size, position error, and shape deformation in the reconstructed images. To obtain uniform sensitivity throughout the entire sensing area, we developed an intensity scaling method to correct reconstructed amplitudes based on simulation studies. A diagonal scaling matrix was developed for a symmetric circular sensing area, and the scaling value were constructed according to the radial positions of the finite elements. The correction method was further evaluated on a compliant EIT-based touch sensor made of polymer filled composites with underlying paddings. We found that the developed method effectively produced a more uniform sensitivity distribution, and improved spatial profiles of shape deformation. The findings shown here help better interpret the strength information of tactile stimuli located at different positions of large area EIT-based sensors.
doi_str_mv 10.1109/JSEN.2021.3103988
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2021_3103988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9511433</ieee_id><sourcerecordid>2578235986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-19d243cb0ea8a090b62e6f646fc6280abaa7877e22c53e707ddda53934e4f9883</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhosoOKc_QLwJeN2Zj6ZJLuecOhk62ATvSpaezoy2qUknzF9v64ZX57143vfAE0XXBI8IweruZTl9HVFMyYgRzJSUJ9GAcC5jIhJ52meG44SJj_PoIoQtxkQJLgZRO3dGt9bV8QM0UOdQt2gBvnC-0rUB5Ao0134D8diDRgsLP85DsKG134BW2rS2BLSEOjgf0L0OkCNXo2kJpvXW6BLNqgbyv6mVq9zG6-ZzfxmdFboMcHW8w-j9cbqaPMfzt6fZZDyPDVWsjYnKacLMGoOWGiu8TimkRZqkhUmpxHqttZBCAKWGMxBY5HmuOVMsgaToFLBhdHvYbbz72kFos63b-bp7mVEuJGVcybSjyIEy3oXgocgabyvt9xnBWS836-VmvdzsKLfr3Bw6FgD-ecUJSRhjvyBCdyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2578235986</pqid></control><display><type>article</type><title>Location-Dependent Performance of Large-Area Piezoresistive Tactile Sensors Based on Electrical Impedance Tomography</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Ying ; Liu, Haibin</creator><creatorcontrib>Chen, Ying ; Liu, Haibin</creatorcontrib><description>The technique of electrical impedance tomography (EIT) has been recognized as a promising method to design tactile sensors with continuous sensing capability over a large area. The mechanism of electrical impedance tomography allows reconstructing tactile information within the sensing area based on measurements made only at the boundary. However, spatial performance of EIT-based tactile sensors has demonstrated location dependency, which severely affects correct interpretation of tactile stimuli. Here, we analyzed the effect of hyperparameter on the spatial performance, in terms of amplitude, size, position error, and shape deformation in the reconstructed images. To obtain uniform sensitivity throughout the entire sensing area, we developed an intensity scaling method to correct reconstructed amplitudes based on simulation studies. A diagonal scaling matrix was developed for a symmetric circular sensing area, and the scaling value were constructed according to the radial positions of the finite elements. The correction method was further evaluated on a compliant EIT-based touch sensor made of polymer filled composites with underlying paddings. We found that the developed method effectively produced a more uniform sensitivity distribution, and improved spatial profiles of shape deformation. The findings shown here help better interpret the strength information of tactile stimuli located at different positions of large area EIT-based sensors.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3103988</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplitudes ; Area sensing ; Conductivity ; Deformation ; Electrical impedance ; Electrical impedance tomography ; Finite element method ; Image reconstruction ; impedance tomography ; intensity correction ; Mathematical analysis ; polymer composites ; Polymer matrix composites ; Position errors ; Scaling ; Sensitivity ; Sensors ; Skeletal composites ; soft sensors ; Stimuli ; Strain ; Tactile sensors ; Tactile sensors (robotics) ; Tomography</subject><ispartof>IEEE sensors journal, 2021-10, Vol.21 (19), p.21622-21630</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-19d243cb0ea8a090b62e6f646fc6280abaa7877e22c53e707ddda53934e4f9883</citedby><cites>FETCH-LOGICAL-c293t-19d243cb0ea8a090b62e6f646fc6280abaa7877e22c53e707ddda53934e4f9883</cites><orcidid>0000-0002-8267-8717 ; 0000-0003-2611-333X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9511433$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9511433$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Liu, Haibin</creatorcontrib><title>Location-Dependent Performance of Large-Area Piezoresistive Tactile Sensors Based on Electrical Impedance Tomography</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The technique of electrical impedance tomography (EIT) has been recognized as a promising method to design tactile sensors with continuous sensing capability over a large area. The mechanism of electrical impedance tomography allows reconstructing tactile information within the sensing area based on measurements made only at the boundary. However, spatial performance of EIT-based tactile sensors has demonstrated location dependency, which severely affects correct interpretation of tactile stimuli. Here, we analyzed the effect of hyperparameter on the spatial performance, in terms of amplitude, size, position error, and shape deformation in the reconstructed images. To obtain uniform sensitivity throughout the entire sensing area, we developed an intensity scaling method to correct reconstructed amplitudes based on simulation studies. A diagonal scaling matrix was developed for a symmetric circular sensing area, and the scaling value were constructed according to the radial positions of the finite elements. The correction method was further evaluated on a compliant EIT-based touch sensor made of polymer filled composites with underlying paddings. We found that the developed method effectively produced a more uniform sensitivity distribution, and improved spatial profiles of shape deformation. The findings shown here help better interpret the strength information of tactile stimuli located at different positions of large area EIT-based sensors.</description><subject>Amplitudes</subject><subject>Area sensing</subject><subject>Conductivity</subject><subject>Deformation</subject><subject>Electrical impedance</subject><subject>Electrical impedance tomography</subject><subject>Finite element method</subject><subject>Image reconstruction</subject><subject>impedance tomography</subject><subject>intensity correction</subject><subject>Mathematical analysis</subject><subject>polymer composites</subject><subject>Polymer matrix composites</subject><subject>Position errors</subject><subject>Scaling</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Skeletal composites</subject><subject>soft sensors</subject><subject>Stimuli</subject><subject>Strain</subject><subject>Tactile sensors</subject><subject>Tactile sensors (robotics)</subject><subject>Tomography</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhosoOKc_QLwJeN2Zj6ZJLuecOhk62ATvSpaezoy2qUknzF9v64ZX57143vfAE0XXBI8IweruZTl9HVFMyYgRzJSUJ9GAcC5jIhJ52meG44SJj_PoIoQtxkQJLgZRO3dGt9bV8QM0UOdQt2gBvnC-0rUB5Ao0134D8diDRgsLP85DsKG134BW2rS2BLSEOjgf0L0OkCNXo2kJpvXW6BLNqgbyv6mVq9zG6-ZzfxmdFboMcHW8w-j9cbqaPMfzt6fZZDyPDVWsjYnKacLMGoOWGiu8TimkRZqkhUmpxHqttZBCAKWGMxBY5HmuOVMsgaToFLBhdHvYbbz72kFos63b-bp7mVEuJGVcybSjyIEy3oXgocgabyvt9xnBWS836-VmvdzsKLfr3Bw6FgD-ecUJSRhjvyBCdyI</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Chen, Ying</creator><creator>Liu, Haibin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8267-8717</orcidid><orcidid>https://orcid.org/0000-0003-2611-333X</orcidid></search><sort><creationdate>20211001</creationdate><title>Location-Dependent Performance of Large-Area Piezoresistive Tactile Sensors Based on Electrical Impedance Tomography</title><author>Chen, Ying ; Liu, Haibin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-19d243cb0ea8a090b62e6f646fc6280abaa7877e22c53e707ddda53934e4f9883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplitudes</topic><topic>Area sensing</topic><topic>Conductivity</topic><topic>Deformation</topic><topic>Electrical impedance</topic><topic>Electrical impedance tomography</topic><topic>Finite element method</topic><topic>Image reconstruction</topic><topic>impedance tomography</topic><topic>intensity correction</topic><topic>Mathematical analysis</topic><topic>polymer composites</topic><topic>Polymer matrix composites</topic><topic>Position errors</topic><topic>Scaling</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Skeletal composites</topic><topic>soft sensors</topic><topic>Stimuli</topic><topic>Strain</topic><topic>Tactile sensors</topic><topic>Tactile sensors (robotics)</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Liu, Haibin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Ying</au><au>Liu, Haibin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Location-Dependent Performance of Large-Area Piezoresistive Tactile Sensors Based on Electrical Impedance Tomography</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>21</volume><issue>19</issue><spage>21622</spage><epage>21630</epage><pages>21622-21630</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The technique of electrical impedance tomography (EIT) has been recognized as a promising method to design tactile sensors with continuous sensing capability over a large area. The mechanism of electrical impedance tomography allows reconstructing tactile information within the sensing area based on measurements made only at the boundary. However, spatial performance of EIT-based tactile sensors has demonstrated location dependency, which severely affects correct interpretation of tactile stimuli. Here, we analyzed the effect of hyperparameter on the spatial performance, in terms of amplitude, size, position error, and shape deformation in the reconstructed images. To obtain uniform sensitivity throughout the entire sensing area, we developed an intensity scaling method to correct reconstructed amplitudes based on simulation studies. A diagonal scaling matrix was developed for a symmetric circular sensing area, and the scaling value were constructed according to the radial positions of the finite elements. The correction method was further evaluated on a compliant EIT-based touch sensor made of polymer filled composites with underlying paddings. We found that the developed method effectively produced a more uniform sensitivity distribution, and improved spatial profiles of shape deformation. The findings shown here help better interpret the strength information of tactile stimuli located at different positions of large area EIT-based sensors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3103988</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8267-8717</orcidid><orcidid>https://orcid.org/0000-0003-2611-333X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-10, Vol.21 (19), p.21622-21630
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2021_3103988
source IEEE Electronic Library (IEL)
subjects Amplitudes
Area sensing
Conductivity
Deformation
Electrical impedance
Electrical impedance tomography
Finite element method
Image reconstruction
impedance tomography
intensity correction
Mathematical analysis
polymer composites
Polymer matrix composites
Position errors
Scaling
Sensitivity
Sensors
Skeletal composites
soft sensors
Stimuli
Strain
Tactile sensors
Tactile sensors (robotics)
Tomography
title Location-Dependent Performance of Large-Area Piezoresistive Tactile Sensors Based on Electrical Impedance Tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Location-Dependent%20Performance%20of%20Large-Area%20Piezoresistive%20Tactile%20Sensors%20Based%20on%20Electrical%20Impedance%20Tomography&rft.jtitle=IEEE%20sensors%20journal&rft.au=Chen,%20Ying&rft.date=2021-10-01&rft.volume=21&rft.issue=19&rft.spage=21622&rft.epage=21630&rft.pages=21622-21630&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3103988&rft_dat=%3Cproquest_RIE%3E2578235986%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2578235986&rft_id=info:pmid/&rft_ieee_id=9511433&rfr_iscdi=true