Deep Learning for Ballroom Dance Recognition: A Temporal and Trajectory-Aware Classification Model With Three-Dimensional Pose Estimation and Wearable Sensing
Dance performance recognition methods have been investigated and shown various applications such as picture-pose evaluation and synchronizing foot timing and direction. However, detailed analysis and feedback are still missing. To provide them, understanding the performance by component level is nec...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-11, Vol.21 (22), p.25437-25448 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25448 |
---|---|
container_issue | 22 |
container_start_page | 25437 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Matsuyama, Hitoshi Aoki, Shunsuke Yonezawa, Takuro Hiroi, Kei Kaji, Katsuhiko Kawaguchi, Nobuo |
description | Dance performance recognition methods have been investigated and shown various applications such as picture-pose evaluation and synchronizing foot timing and direction. However, detailed analysis and feedback are still missing. To provide them, understanding the performance by component level is necessary. Specifically, we formulate it as a dance-figure classification problem using three-dimensional body joints and wearable sensors. Our model is based on long short-term memory (LSTM) and includes the temporal and trajectory-wise structure that uses the trajectory information in a timestep and the temporal masking module. As a result, we achieved 93% accuracy with our proposed method, which is highly overwhelming the baseline result (84.7%) and very close to the accuracy of the experienced dancers (93.6%). We have made the dataset of ballroom dance performance dataset open to researchers to develop the activity recognition field further. |
doi_str_mv | 10.1109/JSEN.2021.3098744 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2021_3098744</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9492117</ieee_id><sourcerecordid>2596784905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-20819de02c2629155dd8b5796a70535ae74ecad2fdd167e404026f403398b6fa3</originalsourceid><addsrcrecordid>eNo9kVtLw0AQhRdRsFZ_gPiy4HPq3pLN-lbbeqNesJX6FrbJpN2SZOtuivTP-FtNSPFpBuY7hzMchC4pGVBK1M3zbPI6YITRAScqlkIcoR4NwzigUsTH7c5JILj8OkVn3m8IoUqGsod-xwBbPAXtKlOtcG4dvtNF4awt8VhXKeAPSO2qMrWx1S0e4jmUW-t0gXWV4bnTG0hr6_bB8Ec7wKNCe29yk-qWxy82gwIvTL3G87UDCMamhMo3p8bg3XrAE1-bsoNbw0UTRC8LwLMWq1bn6CTXhYeLw-yjz_vJfPQYTN8enkbDaZAyxuuAkZiqDAhLWcRU83eWxctQqkhLEvJQgxSQ6ozlWUYjCYIIwqJcEM5VvIxyzfvouvPdOvu9A18nG7tzTUqfsFBFMhaqMeoj2lGps947yJOta9K7fUJJ0taQtDUkbQ3JoYZGc9VpDAD880ooRqnkf6KUhTc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596784905</pqid></control><display><type>article</type><title>Deep Learning for Ballroom Dance Recognition: A Temporal and Trajectory-Aware Classification Model With Three-Dimensional Pose Estimation and Wearable Sensing</title><source>IEEE Xplore</source><creator>Matsuyama, Hitoshi ; Aoki, Shunsuke ; Yonezawa, Takuro ; Hiroi, Kei ; Kaji, Katsuhiko ; Kawaguchi, Nobuo</creator><creatorcontrib>Matsuyama, Hitoshi ; Aoki, Shunsuke ; Yonezawa, Takuro ; Hiroi, Kei ; Kaji, Katsuhiko ; Kawaguchi, Nobuo</creatorcontrib><description>Dance performance recognition methods have been investigated and shown various applications such as picture-pose evaluation and synchronizing foot timing and direction. However, detailed analysis and feedback are still missing. To provide them, understanding the performance by component level is necessary. Specifically, we formulate it as a dance-figure classification problem using three-dimensional body joints and wearable sensors. Our model is based on long short-term memory (LSTM) and includes the temporal and trajectory-wise structure that uses the trajectory information in a timestep and the temporal masking module. As a result, we achieved 93% accuracy with our proposed method, which is highly overwhelming the baseline result (84.7%) and very close to the accuracy of the experienced dancers (93.6%). We have made the dataset of ballroom dance performance dataset open to researchers to develop the activity recognition field further.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3098744</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activity recognition ; Ballroom dancing ; Classification ; Dance ; Datasets ; image motion analysis ; Machine learning ; Mirrors ; neural networks ; Pose estimation ; sensor systems and applications ; Sensors ; Sports ; Synchronism ; Three dimensional bodies ; Three dimensional models ; Three-dimensional displays ; Trajectory ; Wearable sensors ; Wearable technology</subject><ispartof>IEEE sensors journal, 2021-11, Vol.21 (22), p.25437-25448</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-20819de02c2629155dd8b5796a70535ae74ecad2fdd167e404026f403398b6fa3</citedby><cites>FETCH-LOGICAL-c223t-20819de02c2629155dd8b5796a70535ae74ecad2fdd167e404026f403398b6fa3</cites><orcidid>0000-0001-8783-4048 ; 0000-0002-3331-2778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9492117$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9492117$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Matsuyama, Hitoshi</creatorcontrib><creatorcontrib>Aoki, Shunsuke</creatorcontrib><creatorcontrib>Yonezawa, Takuro</creatorcontrib><creatorcontrib>Hiroi, Kei</creatorcontrib><creatorcontrib>Kaji, Katsuhiko</creatorcontrib><creatorcontrib>Kawaguchi, Nobuo</creatorcontrib><title>Deep Learning for Ballroom Dance Recognition: A Temporal and Trajectory-Aware Classification Model With Three-Dimensional Pose Estimation and Wearable Sensing</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Dance performance recognition methods have been investigated and shown various applications such as picture-pose evaluation and synchronizing foot timing and direction. However, detailed analysis and feedback are still missing. To provide them, understanding the performance by component level is necessary. Specifically, we formulate it as a dance-figure classification problem using three-dimensional body joints and wearable sensors. Our model is based on long short-term memory (LSTM) and includes the temporal and trajectory-wise structure that uses the trajectory information in a timestep and the temporal masking module. As a result, we achieved 93% accuracy with our proposed method, which is highly overwhelming the baseline result (84.7%) and very close to the accuracy of the experienced dancers (93.6%). We have made the dataset of ballroom dance performance dataset open to researchers to develop the activity recognition field further.</description><subject>Activity recognition</subject><subject>Ballroom dancing</subject><subject>Classification</subject><subject>Dance</subject><subject>Datasets</subject><subject>image motion analysis</subject><subject>Machine learning</subject><subject>Mirrors</subject><subject>neural networks</subject><subject>Pose estimation</subject><subject>sensor systems and applications</subject><subject>Sensors</subject><subject>Sports</subject><subject>Synchronism</subject><subject>Three dimensional bodies</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Trajectory</subject><subject>Wearable sensors</subject><subject>Wearable technology</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kVtLw0AQhRdRsFZ_gPiy4HPq3pLN-lbbeqNesJX6FrbJpN2SZOtuivTP-FtNSPFpBuY7hzMchC4pGVBK1M3zbPI6YITRAScqlkIcoR4NwzigUsTH7c5JILj8OkVn3m8IoUqGsod-xwBbPAXtKlOtcG4dvtNF4awt8VhXKeAPSO2qMrWx1S0e4jmUW-t0gXWV4bnTG0hr6_bB8Ec7wKNCe29yk-qWxy82gwIvTL3G87UDCMamhMo3p8bg3XrAE1-bsoNbw0UTRC8LwLMWq1bn6CTXhYeLw-yjz_vJfPQYTN8enkbDaZAyxuuAkZiqDAhLWcRU83eWxctQqkhLEvJQgxSQ6ozlWUYjCYIIwqJcEM5VvIxyzfvouvPdOvu9A18nG7tzTUqfsFBFMhaqMeoj2lGps947yJOta9K7fUJJ0taQtDUkbQ3JoYZGc9VpDAD880ooRqnkf6KUhTc</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Matsuyama, Hitoshi</creator><creator>Aoki, Shunsuke</creator><creator>Yonezawa, Takuro</creator><creator>Hiroi, Kei</creator><creator>Kaji, Katsuhiko</creator><creator>Kawaguchi, Nobuo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8783-4048</orcidid><orcidid>https://orcid.org/0000-0002-3331-2778</orcidid></search><sort><creationdate>20211115</creationdate><title>Deep Learning for Ballroom Dance Recognition: A Temporal and Trajectory-Aware Classification Model With Three-Dimensional Pose Estimation and Wearable Sensing</title><author>Matsuyama, Hitoshi ; Aoki, Shunsuke ; Yonezawa, Takuro ; Hiroi, Kei ; Kaji, Katsuhiko ; Kawaguchi, Nobuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-20819de02c2629155dd8b5796a70535ae74ecad2fdd167e404026f403398b6fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activity recognition</topic><topic>Ballroom dancing</topic><topic>Classification</topic><topic>Dance</topic><topic>Datasets</topic><topic>image motion analysis</topic><topic>Machine learning</topic><topic>Mirrors</topic><topic>neural networks</topic><topic>Pose estimation</topic><topic>sensor systems and applications</topic><topic>Sensors</topic><topic>Sports</topic><topic>Synchronism</topic><topic>Three dimensional bodies</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Trajectory</topic><topic>Wearable sensors</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsuyama, Hitoshi</creatorcontrib><creatorcontrib>Aoki, Shunsuke</creatorcontrib><creatorcontrib>Yonezawa, Takuro</creatorcontrib><creatorcontrib>Hiroi, Kei</creatorcontrib><creatorcontrib>Kaji, Katsuhiko</creatorcontrib><creatorcontrib>Kawaguchi, Nobuo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Matsuyama, Hitoshi</au><au>Aoki, Shunsuke</au><au>Yonezawa, Takuro</au><au>Hiroi, Kei</au><au>Kaji, Katsuhiko</au><au>Kawaguchi, Nobuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning for Ballroom Dance Recognition: A Temporal and Trajectory-Aware Classification Model With Three-Dimensional Pose Estimation and Wearable Sensing</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-11-15</date><risdate>2021</risdate><volume>21</volume><issue>22</issue><spage>25437</spage><epage>25448</epage><pages>25437-25448</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Dance performance recognition methods have been investigated and shown various applications such as picture-pose evaluation and synchronizing foot timing and direction. However, detailed analysis and feedback are still missing. To provide them, understanding the performance by component level is necessary. Specifically, we formulate it as a dance-figure classification problem using three-dimensional body joints and wearable sensors. Our model is based on long short-term memory (LSTM) and includes the temporal and trajectory-wise structure that uses the trajectory information in a timestep and the temporal masking module. As a result, we achieved 93% accuracy with our proposed method, which is highly overwhelming the baseline result (84.7%) and very close to the accuracy of the experienced dancers (93.6%). We have made the dataset of ballroom dance performance dataset open to researchers to develop the activity recognition field further.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3098744</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8783-4048</orcidid><orcidid>https://orcid.org/0000-0002-3331-2778</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-11, Vol.21 (22), p.25437-25448 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2021_3098744 |
source | IEEE Xplore |
subjects | Activity recognition Ballroom dancing Classification Dance Datasets image motion analysis Machine learning Mirrors neural networks Pose estimation sensor systems and applications Sensors Sports Synchronism Three dimensional bodies Three dimensional models Three-dimensional displays Trajectory Wearable sensors Wearable technology |
title | Deep Learning for Ballroom Dance Recognition: A Temporal and Trajectory-Aware Classification Model With Three-Dimensional Pose Estimation and Wearable Sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A02%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20for%20Ballroom%20Dance%20Recognition:%20A%20Temporal%20and%20Trajectory-Aware%20Classification%20Model%20With%20Three-Dimensional%20Pose%20Estimation%20and%20Wearable%20Sensing&rft.jtitle=IEEE%20sensors%20journal&rft.au=Matsuyama,%20Hitoshi&rft.date=2021-11-15&rft.volume=21&rft.issue=22&rft.spage=25437&rft.epage=25448&rft.pages=25437-25448&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3098744&rft_dat=%3Cproquest_RIE%3E2596784905%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596784905&rft_id=info:pmid/&rft_ieee_id=9492117&rfr_iscdi=true |