Prediction on the Urban GNSS Measurement Uncertainty Based on Deep Learning Networks With Long Short-Term Memory

The GNSS performance could be significantly degraded by the interferences in an urban canyon, such as the blockage of the direct signal and the measurement error due to reflected signals. Such interferences can hardly be predicted by statistical or physical models, making urban GNSS positioning unab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-09, Vol.21 (18), p.20563-20577
Hauptverfasser: Zhang, Guohao, Xu, Penghui, Xu, Haosheng, Hsu, Li-Ta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20577
container_issue 18
container_start_page 20563
container_title IEEE sensors journal
container_volume 21
creator Zhang, Guohao
Xu, Penghui
Xu, Haosheng
Hsu, Li-Ta
description The GNSS performance could be significantly degraded by the interferences in an urban canyon, such as the blockage of the direct signal and the measurement error due to reflected signals. Such interferences can hardly be predicted by statistical or physical models, making urban GNSS positioning unable to achieve satisfactory accuracy. The deep learning networks, specializing in extracting abstract representations from data, may learn the representation about the GNSS measurement quality from existing measurements, which can be employed to predict the interferences in an urban area. In this study, we proposed a deep learning network architecture combining the conventional fully connected neural networks (FCNNs) and the long short-term memory (LSTM) networks, to predict the GNSS satellite visibility and pseudorange error based on GNSS measurement-level data. The performance of the proposed deep learning networks is evaluated by real experimental data in an urban area. It can predict the satellite visibility with 80.1% accuracy and predict the pseudorange errors with an average difference of 4.9 meters to the labeled errors. Experiments are conducted to investigate what representations have been learned from data by the proposed deep learning networks. Analysis results show that the LSTM layer within the proposed networks may contain representations about the environment, which affects the prediction behavior and can associate with the real environment information.
doi_str_mv 10.1109/JSEN.2021.3098006
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2021_3098006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9490205</ieee_id><sourcerecordid>2572668246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-66f19532f62f92076ed293dcf2d049c80af736eb5297bc2323b5262288674b9d3</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZP23SPOqcU6lT6Ia-lbS9dZ22qUmG7NvbsiFcuIfLOefCD6FLSiaUEnXznM4WE0YYnXCiYkLEERrRKIoDKsP4eNCcBCGXH6fozLkNIVTJSI5Q92ahrAtfmxb349eAVzbXLZ4v0hS_gHZbCw20Hq_aAqzXdet3-E47KAf_PUCHE9C2rdtPvAD_a-yXw--1X-PE9Kd0bawPlmCbvqwxdneOTir97eDisMdo9TBbTh-D5HX-NL1NgoJz4QMhKqoizirBKsWIFFAyxcuiYiUJVRETXUkuII-YknnBOOO9FIzFsZBhrko-Rtf73s6any04n23M1rb9y4xFkgkRs1D0Lrp3FdY4Z6HKOls32u4ySrIBbDaAzQaw2QFsn7naZ2oA-PerUBFGIv4HLJtzlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572668246</pqid></control><display><type>article</type><title>Prediction on the Urban GNSS Measurement Uncertainty Based on Deep Learning Networks With Long Short-Term Memory</title><source>IEEE Electronic Library Online</source><creator>Zhang, Guohao ; Xu, Penghui ; Xu, Haosheng ; Hsu, Li-Ta</creator><creatorcontrib>Zhang, Guohao ; Xu, Penghui ; Xu, Haosheng ; Hsu, Li-Ta</creatorcontrib><description>The GNSS performance could be significantly degraded by the interferences in an urban canyon, such as the blockage of the direct signal and the measurement error due to reflected signals. Such interferences can hardly be predicted by statistical or physical models, making urban GNSS positioning unable to achieve satisfactory accuracy. The deep learning networks, specializing in extracting abstract representations from data, may learn the representation about the GNSS measurement quality from existing measurements, which can be employed to predict the interferences in an urban area. In this study, we proposed a deep learning network architecture combining the conventional fully connected neural networks (FCNNs) and the long short-term memory (LSTM) networks, to predict the GNSS satellite visibility and pseudorange error based on GNSS measurement-level data. The performance of the proposed deep learning networks is evaluated by real experimental data in an urban area. It can predict the satellite visibility with 80.1% accuracy and predict the pseudorange errors with an average difference of 4.9 meters to the labeled errors. Experiments are conducted to investigate what representations have been learned from data by the proposed deep learning networks. Analysis results show that the LSTM layer within the proposed networks may contain representations about the environment, which affects the prediction behavior and can associate with the real environment information.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3098006</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Buildings ; Computer architecture ; Deep learning ; Error analysis ; Feature extraction ; Global navigation satellite system ; GNSS ; LSTM ; Measurement uncertainty ; Measuring instruments ; multipath ; navigation ; Neural networks ; Representations ; Satellites ; Sensors ; Street canyons ; Urban areas ; urban canyon ; Visibility</subject><ispartof>IEEE sensors journal, 2021-09, Vol.21 (18), p.20563-20577</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-66f19532f62f92076ed293dcf2d049c80af736eb5297bc2323b5262288674b9d3</citedby><cites>FETCH-LOGICAL-c336t-66f19532f62f92076ed293dcf2d049c80af736eb5297bc2323b5262288674b9d3</cites><orcidid>0000-0002-4661-9058 ; 0000-0002-0352-741X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9490205$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9490205$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Guohao</creatorcontrib><creatorcontrib>Xu, Penghui</creatorcontrib><creatorcontrib>Xu, Haosheng</creatorcontrib><creatorcontrib>Hsu, Li-Ta</creatorcontrib><title>Prediction on the Urban GNSS Measurement Uncertainty Based on Deep Learning Networks With Long Short-Term Memory</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The GNSS performance could be significantly degraded by the interferences in an urban canyon, such as the blockage of the direct signal and the measurement error due to reflected signals. Such interferences can hardly be predicted by statistical or physical models, making urban GNSS positioning unable to achieve satisfactory accuracy. The deep learning networks, specializing in extracting abstract representations from data, may learn the representation about the GNSS measurement quality from existing measurements, which can be employed to predict the interferences in an urban area. In this study, we proposed a deep learning network architecture combining the conventional fully connected neural networks (FCNNs) and the long short-term memory (LSTM) networks, to predict the GNSS satellite visibility and pseudorange error based on GNSS measurement-level data. The performance of the proposed deep learning networks is evaluated by real experimental data in an urban area. It can predict the satellite visibility with 80.1% accuracy and predict the pseudorange errors with an average difference of 4.9 meters to the labeled errors. Experiments are conducted to investigate what representations have been learned from data by the proposed deep learning networks. Analysis results show that the LSTM layer within the proposed networks may contain representations about the environment, which affects the prediction behavior and can associate with the real environment information.</description><subject>Buildings</subject><subject>Computer architecture</subject><subject>Deep learning</subject><subject>Error analysis</subject><subject>Feature extraction</subject><subject>Global navigation satellite system</subject><subject>GNSS</subject><subject>LSTM</subject><subject>Measurement uncertainty</subject><subject>Measuring instruments</subject><subject>multipath</subject><subject>navigation</subject><subject>Neural networks</subject><subject>Representations</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Street canyons</subject><subject>Urban areas</subject><subject>urban canyon</subject><subject>Visibility</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF9LwzAUxYMoOKcfQHwJ-NyZP23SPOqcU6lT6Ia-lbS9dZ22qUmG7NvbsiFcuIfLOefCD6FLSiaUEnXznM4WE0YYnXCiYkLEERrRKIoDKsP4eNCcBCGXH6fozLkNIVTJSI5Q92ahrAtfmxb349eAVzbXLZ4v0hS_gHZbCw20Hq_aAqzXdet3-E47KAf_PUCHE9C2rdtPvAD_a-yXw--1X-PE9Kd0bawPlmCbvqwxdneOTir97eDisMdo9TBbTh-D5HX-NL1NgoJz4QMhKqoizirBKsWIFFAyxcuiYiUJVRETXUkuII-YknnBOOO9FIzFsZBhrko-Rtf73s6any04n23M1rb9y4xFkgkRs1D0Lrp3FdY4Z6HKOls32u4ySrIBbDaAzQaw2QFsn7naZ2oA-PerUBFGIv4HLJtzlw</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Zhang, Guohao</creator><creator>Xu, Penghui</creator><creator>Xu, Haosheng</creator><creator>Hsu, Li-Ta</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4661-9058</orcidid><orcidid>https://orcid.org/0000-0002-0352-741X</orcidid></search><sort><creationdate>20210915</creationdate><title>Prediction on the Urban GNSS Measurement Uncertainty Based on Deep Learning Networks With Long Short-Term Memory</title><author>Zhang, Guohao ; Xu, Penghui ; Xu, Haosheng ; Hsu, Li-Ta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-66f19532f62f92076ed293dcf2d049c80af736eb5297bc2323b5262288674b9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Buildings</topic><topic>Computer architecture</topic><topic>Deep learning</topic><topic>Error analysis</topic><topic>Feature extraction</topic><topic>Global navigation satellite system</topic><topic>GNSS</topic><topic>LSTM</topic><topic>Measurement uncertainty</topic><topic>Measuring instruments</topic><topic>multipath</topic><topic>navigation</topic><topic>Neural networks</topic><topic>Representations</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Street canyons</topic><topic>Urban areas</topic><topic>urban canyon</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guohao</creatorcontrib><creatorcontrib>Xu, Penghui</creatorcontrib><creatorcontrib>Xu, Haosheng</creatorcontrib><creatorcontrib>Hsu, Li-Ta</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Guohao</au><au>Xu, Penghui</au><au>Xu, Haosheng</au><au>Hsu, Li-Ta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction on the Urban GNSS Measurement Uncertainty Based on Deep Learning Networks With Long Short-Term Memory</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-09-15</date><risdate>2021</risdate><volume>21</volume><issue>18</issue><spage>20563</spage><epage>20577</epage><pages>20563-20577</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The GNSS performance could be significantly degraded by the interferences in an urban canyon, such as the blockage of the direct signal and the measurement error due to reflected signals. Such interferences can hardly be predicted by statistical or physical models, making urban GNSS positioning unable to achieve satisfactory accuracy. The deep learning networks, specializing in extracting abstract representations from data, may learn the representation about the GNSS measurement quality from existing measurements, which can be employed to predict the interferences in an urban area. In this study, we proposed a deep learning network architecture combining the conventional fully connected neural networks (FCNNs) and the long short-term memory (LSTM) networks, to predict the GNSS satellite visibility and pseudorange error based on GNSS measurement-level data. The performance of the proposed deep learning networks is evaluated by real experimental data in an urban area. It can predict the satellite visibility with 80.1% accuracy and predict the pseudorange errors with an average difference of 4.9 meters to the labeled errors. Experiments are conducted to investigate what representations have been learned from data by the proposed deep learning networks. Analysis results show that the LSTM layer within the proposed networks may contain representations about the environment, which affects the prediction behavior and can associate with the real environment information.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3098006</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4661-9058</orcidid><orcidid>https://orcid.org/0000-0002-0352-741X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-09, Vol.21 (18), p.20563-20577
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2021_3098006
source IEEE Electronic Library Online
subjects Buildings
Computer architecture
Deep learning
Error analysis
Feature extraction
Global navigation satellite system
GNSS
LSTM
Measurement uncertainty
Measuring instruments
multipath
navigation
Neural networks
Representations
Satellites
Sensors
Street canyons
Urban areas
urban canyon
Visibility
title Prediction on the Urban GNSS Measurement Uncertainty Based on Deep Learning Networks With Long Short-Term Memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20on%20the%20Urban%20GNSS%20Measurement%20Uncertainty%20Based%20on%20Deep%20Learning%20Networks%20With%20Long%20Short-Term%20Memory&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zhang,%20Guohao&rft.date=2021-09-15&rft.volume=21&rft.issue=18&rft.spage=20563&rft.epage=20577&rft.pages=20563-20577&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3098006&rft_dat=%3Cproquest_RIE%3E2572668246%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572668246&rft_id=info:pmid/&rft_ieee_id=9490205&rfr_iscdi=true