Target Classification by mmWave FMCW Radars Using Machine Learning on Range-Angle Images

In this paper, we present a novel multiclass-target classification method for mmWave frequency modulated continuous wave (FMCW) radar operating in the frequency range of 77 - 81 GHz, based on custom range-angle heatmaps and machine learning tools. The elevation field of view (FoV) is increased by or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-09, Vol.21 (18), p.19993-20001
Hauptverfasser: Gupta, Siddharth, Rai, Prabhat Kumar, Kumar, Abhinav, Yalavarthy, Phaneendra K., Cenkeramaddi, Linga Reddy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20001
container_issue 18
container_start_page 19993
container_title IEEE sensors journal
container_volume 21
creator Gupta, Siddharth
Rai, Prabhat Kumar
Kumar, Abhinav
Yalavarthy, Phaneendra K.
Cenkeramaddi, Linga Reddy
description In this paper, we present a novel multiclass-target classification method for mmWave frequency modulated continuous wave (FMCW) radar operating in the frequency range of 77 - 81 GHz, based on custom range-angle heatmaps and machine learning tools. The elevation field of view (FoV) is increased by orienting the Radar antennas in elevation. In this orientation, the radar focuses the beam in elevation to improve the elevation FoV. The azimuth FoV is improved by mechanically rotating the Radar horizontally, which has antenna elements oriented in the elevation direction. The data from the Radar measurements obtained by mechanical rotation of the Radar in Azimuth are used to generate a range-angle heatmap. The measurements are taken in a variety of real-world scenarios with various objects such as humans, a car, and an unmanned aerial vehicle (UAV), also known as a drone. The proposed technique achieves accuracy of 97.6 % and 99.6 % for classifying the UAV and humans, respectively, and accuracy of 98.1 % for classifying the car from the range-angle FoV heatmap. Such a Radar classification technique will be extremely useful for a wide range of applications in cost-effective and dependable autonomous systems, including ground station traffic monitoring and surveillance, as well as control systems for both on-ground and aerial vehicles.
doi_str_mv 10.1109/JSEN.2021.3092583
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2021_3092583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9465137</ieee_id><sourcerecordid>2572670928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-67633a74939524070406df35acbf933f51b88fb7cff87b3332efe665f301f44a3</originalsourceid><addsrcrecordid>eNo9kNFqwjAUhsPYYM7tAcZuAruuS3KSprmUoptDN3CK3oW0Jl3FVpfUgW-_FmVX5-fw_efAh9AjJQNKiXp5_xp9DBhhdABEMZHAFepRIZKISp5cdxlIxEGub9FdCFtCqJJC9tB6YXxhG5zuTAilK3PTlPsaZydcVSvza_F4lq7w3GyMD3gZyrrAM5N_l7XFU2t83S1afm7qwkbDuthZPKlMYcM9unFmF-zDZfbRcjxapG_R9PN1kg6nUc4UNFEsYwAjuQIlGCeScBJvHAiTZ04BOEGzJHGZzJ1LZAYAzDobx8IBoY5zA330fL578Pufow2N3u6Pvm5faiYki2WrI2kpeqZyvw_BW6cPvqyMP2lKdCdQdwJ1J1BfBLadp3OntNb-84rHgoKEP4R0aq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572670928</pqid></control><display><type>article</type><title>Target Classification by mmWave FMCW Radars Using Machine Learning on Range-Angle Images</title><source>IEEE Electronic Library (IEL)</source><creator>Gupta, Siddharth ; Rai, Prabhat Kumar ; Kumar, Abhinav ; Yalavarthy, Phaneendra K. ; Cenkeramaddi, Linga Reddy</creator><creatorcontrib>Gupta, Siddharth ; Rai, Prabhat Kumar ; Kumar, Abhinav ; Yalavarthy, Phaneendra K. ; Cenkeramaddi, Linga Reddy</creatorcontrib><description>In this paper, we present a novel multiclass-target classification method for mmWave frequency modulated continuous wave (FMCW) radar operating in the frequency range of 77 - 81 GHz, based on custom range-angle heatmaps and machine learning tools. The elevation field of view (FoV) is increased by orienting the Radar antennas in elevation. In this orientation, the radar focuses the beam in elevation to improve the elevation FoV. The azimuth FoV is improved by mechanically rotating the Radar horizontally, which has antenna elements oriented in the elevation direction. The data from the Radar measurements obtained by mechanical rotation of the Radar in Azimuth are used to generate a range-angle heatmap. The measurements are taken in a variety of real-world scenarios with various objects such as humans, a car, and an unmanned aerial vehicle (UAV), also known as a drone. The proposed technique achieves accuracy of 97.6 % and 99.6 % for classifying the UAV and humans, respectively, and accuracy of 98.1 % for classifying the car from the range-angle FoV heatmap. Such a Radar classification technique will be extremely useful for a wide range of applications in cost-effective and dependable autonomous systems, including ground station traffic monitoring and surveillance, as well as control systems for both on-ground and aerial vehicles.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3092583</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automobiles ; Autonomous systems ; Azimuth ; azimuth angle ; Chirp ; Classification ; Continuous radiation ; Drone aircraft ; Drone vehicles ; Drones ; elevation angle ; enhanced field of view ; Field of view ; FMCW radar ; Frequency ranges ; Ground stations ; Heating systems ; heatmap ; Image classification ; Machine learning ; Millimeter waves ; mmWave Radar ; Radar ; Radar antennas ; Radar measurement ; System effectiveness ; Traffic surveillance ; Unmanned aerial vehicles ; YOLO v3</subject><ispartof>IEEE sensors journal, 2021-09, Vol.21 (18), p.19993-20001</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-67633a74939524070406df35acbf933f51b88fb7cff87b3332efe665f301f44a3</citedby><cites>FETCH-LOGICAL-c293t-67633a74939524070406df35acbf933f51b88fb7cff87b3332efe665f301f44a3</cites><orcidid>0000-0002-1023-2118 ; 0000-0003-4810-352X ; 0000-0003-4241-5434 ; 0000-0002-4000-5637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9465137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9465137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gupta, Siddharth</creatorcontrib><creatorcontrib>Rai, Prabhat Kumar</creatorcontrib><creatorcontrib>Kumar, Abhinav</creatorcontrib><creatorcontrib>Yalavarthy, Phaneendra K.</creatorcontrib><creatorcontrib>Cenkeramaddi, Linga Reddy</creatorcontrib><title>Target Classification by mmWave FMCW Radars Using Machine Learning on Range-Angle Images</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this paper, we present a novel multiclass-target classification method for mmWave frequency modulated continuous wave (FMCW) radar operating in the frequency range of 77 - 81 GHz, based on custom range-angle heatmaps and machine learning tools. The elevation field of view (FoV) is increased by orienting the Radar antennas in elevation. In this orientation, the radar focuses the beam in elevation to improve the elevation FoV. The azimuth FoV is improved by mechanically rotating the Radar horizontally, which has antenna elements oriented in the elevation direction. The data from the Radar measurements obtained by mechanical rotation of the Radar in Azimuth are used to generate a range-angle heatmap. The measurements are taken in a variety of real-world scenarios with various objects such as humans, a car, and an unmanned aerial vehicle (UAV), also known as a drone. The proposed technique achieves accuracy of 97.6 % and 99.6 % for classifying the UAV and humans, respectively, and accuracy of 98.1 % for classifying the car from the range-angle FoV heatmap. Such a Radar classification technique will be extremely useful for a wide range of applications in cost-effective and dependable autonomous systems, including ground station traffic monitoring and surveillance, as well as control systems for both on-ground and aerial vehicles.</description><subject>Automobiles</subject><subject>Autonomous systems</subject><subject>Azimuth</subject><subject>azimuth angle</subject><subject>Chirp</subject><subject>Classification</subject><subject>Continuous radiation</subject><subject>Drone aircraft</subject><subject>Drone vehicles</subject><subject>Drones</subject><subject>elevation angle</subject><subject>enhanced field of view</subject><subject>Field of view</subject><subject>FMCW radar</subject><subject>Frequency ranges</subject><subject>Ground stations</subject><subject>Heating systems</subject><subject>heatmap</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Millimeter waves</subject><subject>mmWave Radar</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>Radar measurement</subject><subject>System effectiveness</subject><subject>Traffic surveillance</subject><subject>Unmanned aerial vehicles</subject><subject>YOLO v3</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFqwjAUhsPYYM7tAcZuAruuS3KSprmUoptDN3CK3oW0Jl3FVpfUgW-_FmVX5-fw_efAh9AjJQNKiXp5_xp9DBhhdABEMZHAFepRIZKISp5cdxlIxEGub9FdCFtCqJJC9tB6YXxhG5zuTAilK3PTlPsaZydcVSvza_F4lq7w3GyMD3gZyrrAM5N_l7XFU2t83S1afm7qwkbDuthZPKlMYcM9unFmF-zDZfbRcjxapG_R9PN1kg6nUc4UNFEsYwAjuQIlGCeScBJvHAiTZ04BOEGzJHGZzJ1LZAYAzDobx8IBoY5zA330fL578Pufow2N3u6Pvm5faiYki2WrI2kpeqZyvw_BW6cPvqyMP2lKdCdQdwJ1J1BfBLadp3OntNb-84rHgoKEP4R0aq4</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Gupta, Siddharth</creator><creator>Rai, Prabhat Kumar</creator><creator>Kumar, Abhinav</creator><creator>Yalavarthy, Phaneendra K.</creator><creator>Cenkeramaddi, Linga Reddy</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1023-2118</orcidid><orcidid>https://orcid.org/0000-0003-4810-352X</orcidid><orcidid>https://orcid.org/0000-0003-4241-5434</orcidid><orcidid>https://orcid.org/0000-0002-4000-5637</orcidid></search><sort><creationdate>20210915</creationdate><title>Target Classification by mmWave FMCW Radars Using Machine Learning on Range-Angle Images</title><author>Gupta, Siddharth ; Rai, Prabhat Kumar ; Kumar, Abhinav ; Yalavarthy, Phaneendra K. ; Cenkeramaddi, Linga Reddy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-67633a74939524070406df35acbf933f51b88fb7cff87b3332efe665f301f44a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automobiles</topic><topic>Autonomous systems</topic><topic>Azimuth</topic><topic>azimuth angle</topic><topic>Chirp</topic><topic>Classification</topic><topic>Continuous radiation</topic><topic>Drone aircraft</topic><topic>Drone vehicles</topic><topic>Drones</topic><topic>elevation angle</topic><topic>enhanced field of view</topic><topic>Field of view</topic><topic>FMCW radar</topic><topic>Frequency ranges</topic><topic>Ground stations</topic><topic>Heating systems</topic><topic>heatmap</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Millimeter waves</topic><topic>mmWave Radar</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>Radar measurement</topic><topic>System effectiveness</topic><topic>Traffic surveillance</topic><topic>Unmanned aerial vehicles</topic><topic>YOLO v3</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Siddharth</creatorcontrib><creatorcontrib>Rai, Prabhat Kumar</creatorcontrib><creatorcontrib>Kumar, Abhinav</creatorcontrib><creatorcontrib>Yalavarthy, Phaneendra K.</creatorcontrib><creatorcontrib>Cenkeramaddi, Linga Reddy</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gupta, Siddharth</au><au>Rai, Prabhat Kumar</au><au>Kumar, Abhinav</au><au>Yalavarthy, Phaneendra K.</au><au>Cenkeramaddi, Linga Reddy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Target Classification by mmWave FMCW Radars Using Machine Learning on Range-Angle Images</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-09-15</date><risdate>2021</risdate><volume>21</volume><issue>18</issue><spage>19993</spage><epage>20001</epage><pages>19993-20001</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this paper, we present a novel multiclass-target classification method for mmWave frequency modulated continuous wave (FMCW) radar operating in the frequency range of 77 - 81 GHz, based on custom range-angle heatmaps and machine learning tools. The elevation field of view (FoV) is increased by orienting the Radar antennas in elevation. In this orientation, the radar focuses the beam in elevation to improve the elevation FoV. The azimuth FoV is improved by mechanically rotating the Radar horizontally, which has antenna elements oriented in the elevation direction. The data from the Radar measurements obtained by mechanical rotation of the Radar in Azimuth are used to generate a range-angle heatmap. The measurements are taken in a variety of real-world scenarios with various objects such as humans, a car, and an unmanned aerial vehicle (UAV), also known as a drone. The proposed technique achieves accuracy of 97.6 % and 99.6 % for classifying the UAV and humans, respectively, and accuracy of 98.1 % for classifying the car from the range-angle FoV heatmap. Such a Radar classification technique will be extremely useful for a wide range of applications in cost-effective and dependable autonomous systems, including ground station traffic monitoring and surveillance, as well as control systems for both on-ground and aerial vehicles.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3092583</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1023-2118</orcidid><orcidid>https://orcid.org/0000-0003-4810-352X</orcidid><orcidid>https://orcid.org/0000-0003-4241-5434</orcidid><orcidid>https://orcid.org/0000-0002-4000-5637</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-09, Vol.21 (18), p.19993-20001
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2021_3092583
source IEEE Electronic Library (IEL)
subjects Automobiles
Autonomous systems
Azimuth
azimuth angle
Chirp
Classification
Continuous radiation
Drone aircraft
Drone vehicles
Drones
elevation angle
enhanced field of view
Field of view
FMCW radar
Frequency ranges
Ground stations
Heating systems
heatmap
Image classification
Machine learning
Millimeter waves
mmWave Radar
Radar
Radar antennas
Radar measurement
System effectiveness
Traffic surveillance
Unmanned aerial vehicles
YOLO v3
title Target Classification by mmWave FMCW Radars Using Machine Learning on Range-Angle Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Target%20Classification%20by%20mmWave%20FMCW%20Radars%20Using%20Machine%20Learning%20on%20Range-Angle%20Images&rft.jtitle=IEEE%20sensors%20journal&rft.au=Gupta,%20Siddharth&rft.date=2021-09-15&rft.volume=21&rft.issue=18&rft.spage=19993&rft.epage=20001&rft.pages=19993-20001&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3092583&rft_dat=%3Cproquest_RIE%3E2572670928%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572670928&rft_id=info:pmid/&rft_ieee_id=9465137&rfr_iscdi=true