A Convolution Neural Network Approach to Access Knee Joint Angle Using Foot Pressure Mapping Images: A Preliminary Investigation

The use of various footwear results in change in knee biomechanics, altering gait pattern. Monitoring the joint angle using machine or deep learning approaches is challenging due to input data type selection. This study introduces a convolution neural network (CNN) relied on foot pressure mapping to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-08, Vol.21 (15), p.16937-16944
Hauptverfasser: Chhoeum, Vantha, Kim, Young, Min, Se Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16944
container_issue 15
container_start_page 16937
container_title IEEE sensors journal
container_volume 21
creator Chhoeum, Vantha
Kim, Young
Min, Se Dong
description The use of various footwear results in change in knee biomechanics, altering gait pattern. Monitoring the joint angle using machine or deep learning approaches is challenging due to input data type selection. This study introduces a convolution neural network (CNN) relied on foot pressure mapping to assess knee joint angle during use of various footwear. A pilot study was conducted with six healthy participants walking at a comfortable gait on a treadmill wearing three types of footwear. We used the F-scan system to measure foot pressure and saved the information to video as input data. Kinematic data of knee joint angle was calibrated by Kinovea software using video recording and served as reference data. We extracted 10 gait cycles from input and reference data. The CNN model was trained with 12000 images and validated with 3000 images. Results of our study suggest that the CNN image-based can accurately predict the knee joint angle with mean absolute error lower than 10.0 (deg), mean relative error less than 10.0%, and the correlation coefficient between 70.0% and 90.0% for the three types of tested footwear. The CNN image-based generated a similar knee joint angle pattern for a gait cycle (GC) of all tested shoes; less information about the image pattern during the swing phase is available. Integration between CNN and foot pressure mapping image provided a strong correlation in estimating knee joint angle for a GC during use of three footwear types.
doi_str_mv 10.1109/JSEN.2021.3079516
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2021_3079516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9429185</ieee_id><sourcerecordid>2556493490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-ef851fc47846306bc608cd6d4ecdc8ced8bbf2d3c5504def3a099315b406eb573</originalsourceid><addsrcrecordid>eNo9UEFOwzAQjBBIlMIDEBdLnFPs2E5sblHVQkspSFCJW5Q4m5CS2sFOirjxdBIVcZrV7szO7njeJcETQrC8Wb7M1pMAB2RCcSQ5CY-8EeFc-CRi4nioKfYZjd5OvTPnthgTGfFo5P3EaGr03tRdWxmN1tDZtO6h_TL2A8VNY02q3lFrUKwUOIceNABamkq3KNZlDWjjKl2iuTEterY9o7OAHtOmGbqLXVqCu0XxMKqrXaVT-40Weg-urcp0sDz3Toq0dnDxh2NvM5-9Tu_91dPdYhqvfBVI2vpQCE4KxSLBQorDTIVYqDzMGahcCQW5yLIiyKniHLMcCppiKSnhGcMhZDyiY-_6sLf_6LPr_ZOt6azuLZOA85BJyiTuWeTAUtY4Z6FIGlvt-qMTgpMh6GQIOhmCTv6C7jVXB00FAP98yQJJBKe_D8d7ZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556493490</pqid></control><display><type>article</type><title>A Convolution Neural Network Approach to Access Knee Joint Angle Using Foot Pressure Mapping Images: A Preliminary Investigation</title><source>IEEE Electronic Library (IEL)</source><creator>Chhoeum, Vantha ; Kim, Young ; Min, Se Dong</creator><creatorcontrib>Chhoeum, Vantha ; Kim, Young ; Min, Se Dong</creatorcontrib><description>The use of various footwear results in change in knee biomechanics, altering gait pattern. Monitoring the joint angle using machine or deep learning approaches is challenging due to input data type selection. This study introduces a convolution neural network (CNN) relied on foot pressure mapping to assess knee joint angle during use of various footwear. A pilot study was conducted with six healthy participants walking at a comfortable gait on a treadmill wearing three types of footwear. We used the F-scan system to measure foot pressure and saved the information to video as input data. Kinematic data of knee joint angle was calibrated by Kinovea software using video recording and served as reference data. We extracted 10 gait cycles from input and reference data. The CNN model was trained with 12000 images and validated with 3000 images. Results of our study suggest that the CNN image-based can accurately predict the knee joint angle with mean absolute error lower than 10.0 (deg), mean relative error less than 10.0%, and the correlation coefficient between 70.0% and 90.0% for the three types of tested footwear. The CNN image-based generated a similar knee joint angle pattern for a gait cycle (GC) of all tested shoes; less information about the image pattern during the swing phase is available. Integration between CNN and foot pressure mapping image provided a strong correlation in estimating knee joint angle for a GC during use of three footwear types.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3079516</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Biomechanics ; Convolution neural network ; Correlation coefficients ; Foot ; foot pressure mapping ; Footwear ; Gait ; Joints (anatomy) ; Knee ; knee joint angle ; Legged locomotion ; Mapping ; Neural networks ; regression ; Sensors ; Shoes ; Software ; Treadmills</subject><ispartof>IEEE sensors journal, 2021-08, Vol.21 (15), p.16937-16944</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-ef851fc47846306bc608cd6d4ecdc8ced8bbf2d3c5504def3a099315b406eb573</citedby><cites>FETCH-LOGICAL-c293t-ef851fc47846306bc608cd6d4ecdc8ced8bbf2d3c5504def3a099315b406eb573</cites><orcidid>0000-0002-9112-2673 ; 0000-0001-8757-4557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9429185$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9429185$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chhoeum, Vantha</creatorcontrib><creatorcontrib>Kim, Young</creatorcontrib><creatorcontrib>Min, Se Dong</creatorcontrib><title>A Convolution Neural Network Approach to Access Knee Joint Angle Using Foot Pressure Mapping Images: A Preliminary Investigation</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>The use of various footwear results in change in knee biomechanics, altering gait pattern. Monitoring the joint angle using machine or deep learning approaches is challenging due to input data type selection. This study introduces a convolution neural network (CNN) relied on foot pressure mapping to assess knee joint angle during use of various footwear. A pilot study was conducted with six healthy participants walking at a comfortable gait on a treadmill wearing three types of footwear. We used the F-scan system to measure foot pressure and saved the information to video as input data. Kinematic data of knee joint angle was calibrated by Kinovea software using video recording and served as reference data. We extracted 10 gait cycles from input and reference data. The CNN model was trained with 12000 images and validated with 3000 images. Results of our study suggest that the CNN image-based can accurately predict the knee joint angle with mean absolute error lower than 10.0 (deg), mean relative error less than 10.0%, and the correlation coefficient between 70.0% and 90.0% for the three types of tested footwear. The CNN image-based generated a similar knee joint angle pattern for a gait cycle (GC) of all tested shoes; less information about the image pattern during the swing phase is available. Integration between CNN and foot pressure mapping image provided a strong correlation in estimating knee joint angle for a GC during use of three footwear types.</description><subject>Artificial neural networks</subject><subject>Biomechanics</subject><subject>Convolution neural network</subject><subject>Correlation coefficients</subject><subject>Foot</subject><subject>foot pressure mapping</subject><subject>Footwear</subject><subject>Gait</subject><subject>Joints (anatomy)</subject><subject>Knee</subject><subject>knee joint angle</subject><subject>Legged locomotion</subject><subject>Mapping</subject><subject>Neural networks</subject><subject>regression</subject><subject>Sensors</subject><subject>Shoes</subject><subject>Software</subject><subject>Treadmills</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UEFOwzAQjBBIlMIDEBdLnFPs2E5sblHVQkspSFCJW5Q4m5CS2sFOirjxdBIVcZrV7szO7njeJcETQrC8Wb7M1pMAB2RCcSQ5CY-8EeFc-CRi4nioKfYZjd5OvTPnthgTGfFo5P3EaGr03tRdWxmN1tDZtO6h_TL2A8VNY02q3lFrUKwUOIceNABamkq3KNZlDWjjKl2iuTEterY9o7OAHtOmGbqLXVqCu0XxMKqrXaVT-40Weg-urcp0sDz3Toq0dnDxh2NvM5-9Tu_91dPdYhqvfBVI2vpQCE4KxSLBQorDTIVYqDzMGahcCQW5yLIiyKniHLMcCppiKSnhGcMhZDyiY-_6sLf_6LPr_ZOt6azuLZOA85BJyiTuWeTAUtY4Z6FIGlvt-qMTgpMh6GQIOhmCTv6C7jVXB00FAP98yQJJBKe_D8d7ZA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Chhoeum, Vantha</creator><creator>Kim, Young</creator><creator>Min, Se Dong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9112-2673</orcidid><orcidid>https://orcid.org/0000-0001-8757-4557</orcidid></search><sort><creationdate>20210801</creationdate><title>A Convolution Neural Network Approach to Access Knee Joint Angle Using Foot Pressure Mapping Images: A Preliminary Investigation</title><author>Chhoeum, Vantha ; Kim, Young ; Min, Se Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-ef851fc47846306bc608cd6d4ecdc8ced8bbf2d3c5504def3a099315b406eb573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Biomechanics</topic><topic>Convolution neural network</topic><topic>Correlation coefficients</topic><topic>Foot</topic><topic>foot pressure mapping</topic><topic>Footwear</topic><topic>Gait</topic><topic>Joints (anatomy)</topic><topic>Knee</topic><topic>knee joint angle</topic><topic>Legged locomotion</topic><topic>Mapping</topic><topic>Neural networks</topic><topic>regression</topic><topic>Sensors</topic><topic>Shoes</topic><topic>Software</topic><topic>Treadmills</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chhoeum, Vantha</creatorcontrib><creatorcontrib>Kim, Young</creatorcontrib><creatorcontrib>Min, Se Dong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chhoeum, Vantha</au><au>Kim, Young</au><au>Min, Se Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Convolution Neural Network Approach to Access Knee Joint Angle Using Foot Pressure Mapping Images: A Preliminary Investigation</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>21</volume><issue>15</issue><spage>16937</spage><epage>16944</epage><pages>16937-16944</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>The use of various footwear results in change in knee biomechanics, altering gait pattern. Monitoring the joint angle using machine or deep learning approaches is challenging due to input data type selection. This study introduces a convolution neural network (CNN) relied on foot pressure mapping to assess knee joint angle during use of various footwear. A pilot study was conducted with six healthy participants walking at a comfortable gait on a treadmill wearing three types of footwear. We used the F-scan system to measure foot pressure and saved the information to video as input data. Kinematic data of knee joint angle was calibrated by Kinovea software using video recording and served as reference data. We extracted 10 gait cycles from input and reference data. The CNN model was trained with 12000 images and validated with 3000 images. Results of our study suggest that the CNN image-based can accurately predict the knee joint angle with mean absolute error lower than 10.0 (deg), mean relative error less than 10.0%, and the correlation coefficient between 70.0% and 90.0% for the three types of tested footwear. The CNN image-based generated a similar knee joint angle pattern for a gait cycle (GC) of all tested shoes; less information about the image pattern during the swing phase is available. Integration between CNN and foot pressure mapping image provided a strong correlation in estimating knee joint angle for a GC during use of three footwear types.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3079516</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9112-2673</orcidid><orcidid>https://orcid.org/0000-0001-8757-4557</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-08, Vol.21 (15), p.16937-16944
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2021_3079516
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Biomechanics
Convolution neural network
Correlation coefficients
Foot
foot pressure mapping
Footwear
Gait
Joints (anatomy)
Knee
knee joint angle
Legged locomotion
Mapping
Neural networks
regression
Sensors
Shoes
Software
Treadmills
title A Convolution Neural Network Approach to Access Knee Joint Angle Using Foot Pressure Mapping Images: A Preliminary Investigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Convolution%20Neural%20Network%20Approach%20to%20Access%20Knee%20Joint%20Angle%20Using%20Foot%20Pressure%20Mapping%20Images:%20A%20Preliminary%20Investigation&rft.jtitle=IEEE%20sensors%20journal&rft.au=Chhoeum,%20Vantha&rft.date=2021-08-01&rft.volume=21&rft.issue=15&rft.spage=16937&rft.epage=16944&rft.pages=16937-16944&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3079516&rft_dat=%3Cproquest_RIE%3E2556493490%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556493490&rft_id=info:pmid/&rft_ieee_id=9429185&rfr_iscdi=true