Image Compression and Plants Classification Using Machine Learning in Controlled-Environment Agriculture: Antarctic Station Use Case

In this article, we share our experience in the scope of controlled-environment agriculture automation in the Antarctic station greenhouse facility called EDEN ISS. For remote plant monitoring, control, and maintenance, we solve the problem of plant classification. Due to the inherent communication...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-08, Vol.21 (16), p.17564-17572
Hauptverfasser: Nesteruk, Sergey, Shadrin, Dmitrii, Pukalchik, Mariia, Somov, Andrey, Zeidler, Conrad, Zabel, Paul, Schubert, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17572
container_issue 16
container_start_page 17564
container_title IEEE sensors journal
container_volume 21
creator Nesteruk, Sergey
Shadrin, Dmitrii
Pukalchik, Mariia
Somov, Andrey
Zeidler, Conrad
Zabel, Paul
Schubert, Daniel
description In this article, we share our experience in the scope of controlled-environment agriculture automation in the Antarctic station greenhouse facility called EDEN ISS. For remote plant monitoring, control, and maintenance, we solve the problem of plant classification. Due to the inherent communication limitations between Antarctica and Europe, we first propose the image compression mechanism for the data collection. We show that we can compress the images, on average, 7.2 times for efficient transmission over the weak channel. Moreover, we prove that decompressed images can be further used for computer vision applications. Upon decompressing images, we apply machine learning for the classification task. We achieve 92.6% accuracy on an 18-classes unbalanced dataset. The proposed approach is promising for a number of agriculture related applications, including the plant classification, identification of plant diseases, and deviation of plant phenology.
doi_str_mv 10.1109/JSEN.2021.3050084
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2021_3050084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9316732</ieee_id><sourcerecordid>2560913430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c4d832565ad0dbc7d0bf02f760dc0a3514da9d8d1f6b2e2b277732a11277daaf3</originalsourceid><addsrcrecordid>eNo9UE1LAzEQXUTBWv0B4iXgeesk2W12vZVStVI_oBa8LdMkW1O22Zqkgnd_uFlaPc1j5n0ML0kuKQwohfLmcT55HjBgdMAhByiyo6RH87xIqciK4w5zSDMu3k-TM-_XALQUueglP9MNrjQZt5ut096b1hK0irw2aIMn4wbjrjYSQ3dZeGNX5Anlh7GazDQ62y2MjXobXNs0WqUT-2VcazfaBjJaOSN3Tdg5fUtGNqCTwUgyD39-MRm9Pk9Oamy8vjjMfrK4m7yNH9LZy_10PJqlkpU8pDJTBWf5MEcFaimFgmUNrBZDUBKQ5zRTWKpC0Xq4ZJotmRCCM6Q0AoVY835yvffduvZzp32o1u3O2RhZRVsoKc84RBbds6RrvXe6rrbObNB9VxSqruyqK7vqyq4OZUfN1V5jtNb__JLTYfyA_wIlwX1F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560913430</pqid></control><display><type>article</type><title>Image Compression and Plants Classification Using Machine Learning in Controlled-Environment Agriculture: Antarctic Station Use Case</title><source>IEEE Electronic Library (IEL)</source><creator>Nesteruk, Sergey ; Shadrin, Dmitrii ; Pukalchik, Mariia ; Somov, Andrey ; Zeidler, Conrad ; Zabel, Paul ; Schubert, Daniel</creator><creatorcontrib>Nesteruk, Sergey ; Shadrin, Dmitrii ; Pukalchik, Mariia ; Somov, Andrey ; Zeidler, Conrad ; Zabel, Paul ; Schubert, Daniel</creatorcontrib><description>In this article, we share our experience in the scope of controlled-environment agriculture automation in the Antarctic station greenhouse facility called EDEN ISS. For remote plant monitoring, control, and maintenance, we solve the problem of plant classification. Due to the inherent communication limitations between Antarctica and Europe, we first propose the image compression mechanism for the data collection. We show that we can compress the images, on average, 7.2 times for efficient transmission over the weak channel. Moreover, we prove that decompressed images can be further used for computer vision applications. Upon decompressing images, we apply machine learning for the classification task. We achieve 92.6% accuracy on an 18-classes unbalanced dataset. The proposed approach is promising for a number of agriculture related applications, including the plant classification, identification of plant diseases, and deviation of plant phenology.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3050084</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agriculture ; Antarctica ; Cameras ; Classification ; Computer vision ; controlled-environment agriculture ; Image classification ; Image coding ; Image compression ; Image transmission ; Machine learning ; Monitoring ; Plant diseases ; Plant monitoring ; Plants (biology) ; Remote control ; Remote monitoring</subject><ispartof>IEEE sensors journal, 2021-08, Vol.21 (16), p.17564-17572</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c4d832565ad0dbc7d0bf02f760dc0a3514da9d8d1f6b2e2b277732a11277daaf3</citedby><cites>FETCH-LOGICAL-c293t-c4d832565ad0dbc7d0bf02f760dc0a3514da9d8d1f6b2e2b277732a11277daaf3</cites><orcidid>0000-0002-4615-3008 ; 0000-0002-9740-6685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9316732$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9316732$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nesteruk, Sergey</creatorcontrib><creatorcontrib>Shadrin, Dmitrii</creatorcontrib><creatorcontrib>Pukalchik, Mariia</creatorcontrib><creatorcontrib>Somov, Andrey</creatorcontrib><creatorcontrib>Zeidler, Conrad</creatorcontrib><creatorcontrib>Zabel, Paul</creatorcontrib><creatorcontrib>Schubert, Daniel</creatorcontrib><title>Image Compression and Plants Classification Using Machine Learning in Controlled-Environment Agriculture: Antarctic Station Use Case</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this article, we share our experience in the scope of controlled-environment agriculture automation in the Antarctic station greenhouse facility called EDEN ISS. For remote plant monitoring, control, and maintenance, we solve the problem of plant classification. Due to the inherent communication limitations between Antarctica and Europe, we first propose the image compression mechanism for the data collection. We show that we can compress the images, on average, 7.2 times for efficient transmission over the weak channel. Moreover, we prove that decompressed images can be further used for computer vision applications. Upon decompressing images, we apply machine learning for the classification task. We achieve 92.6% accuracy on an 18-classes unbalanced dataset. The proposed approach is promising for a number of agriculture related applications, including the plant classification, identification of plant diseases, and deviation of plant phenology.</description><subject>Agriculture</subject><subject>Antarctica</subject><subject>Cameras</subject><subject>Classification</subject><subject>Computer vision</subject><subject>controlled-environment agriculture</subject><subject>Image classification</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image transmission</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Plant diseases</subject><subject>Plant monitoring</subject><subject>Plants (biology)</subject><subject>Remote control</subject><subject>Remote monitoring</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1LAzEQXUTBWv0B4iXgeesk2W12vZVStVI_oBa8LdMkW1O22Zqkgnd_uFlaPc1j5n0ML0kuKQwohfLmcT55HjBgdMAhByiyo6RH87xIqciK4w5zSDMu3k-TM-_XALQUueglP9MNrjQZt5ut096b1hK0irw2aIMn4wbjrjYSQ3dZeGNX5Anlh7GazDQ62y2MjXobXNs0WqUT-2VcazfaBjJaOSN3Tdg5fUtGNqCTwUgyD39-MRm9Pk9Oamy8vjjMfrK4m7yNH9LZy_10PJqlkpU8pDJTBWf5MEcFaimFgmUNrBZDUBKQ5zRTWKpC0Xq4ZJotmRCCM6Q0AoVY835yvffduvZzp32o1u3O2RhZRVsoKc84RBbds6RrvXe6rrbObNB9VxSqruyqK7vqyq4OZUfN1V5jtNb__JLTYfyA_wIlwX1F</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Nesteruk, Sergey</creator><creator>Shadrin, Dmitrii</creator><creator>Pukalchik, Mariia</creator><creator>Somov, Andrey</creator><creator>Zeidler, Conrad</creator><creator>Zabel, Paul</creator><creator>Schubert, Daniel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4615-3008</orcidid><orcidid>https://orcid.org/0000-0002-9740-6685</orcidid></search><sort><creationdate>20210815</creationdate><title>Image Compression and Plants Classification Using Machine Learning in Controlled-Environment Agriculture: Antarctic Station Use Case</title><author>Nesteruk, Sergey ; Shadrin, Dmitrii ; Pukalchik, Mariia ; Somov, Andrey ; Zeidler, Conrad ; Zabel, Paul ; Schubert, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c4d832565ad0dbc7d0bf02f760dc0a3514da9d8d1f6b2e2b277732a11277daaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agriculture</topic><topic>Antarctica</topic><topic>Cameras</topic><topic>Classification</topic><topic>Computer vision</topic><topic>controlled-environment agriculture</topic><topic>Image classification</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image transmission</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Plant diseases</topic><topic>Plant monitoring</topic><topic>Plants (biology)</topic><topic>Remote control</topic><topic>Remote monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nesteruk, Sergey</creatorcontrib><creatorcontrib>Shadrin, Dmitrii</creatorcontrib><creatorcontrib>Pukalchik, Mariia</creatorcontrib><creatorcontrib>Somov, Andrey</creatorcontrib><creatorcontrib>Zeidler, Conrad</creatorcontrib><creatorcontrib>Zabel, Paul</creatorcontrib><creatorcontrib>Schubert, Daniel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nesteruk, Sergey</au><au>Shadrin, Dmitrii</au><au>Pukalchik, Mariia</au><au>Somov, Andrey</au><au>Zeidler, Conrad</au><au>Zabel, Paul</au><au>Schubert, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Compression and Plants Classification Using Machine Learning in Controlled-Environment Agriculture: Antarctic Station Use Case</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-08-15</date><risdate>2021</risdate><volume>21</volume><issue>16</issue><spage>17564</spage><epage>17572</epage><pages>17564-17572</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this article, we share our experience in the scope of controlled-environment agriculture automation in the Antarctic station greenhouse facility called EDEN ISS. For remote plant monitoring, control, and maintenance, we solve the problem of plant classification. Due to the inherent communication limitations between Antarctica and Europe, we first propose the image compression mechanism for the data collection. We show that we can compress the images, on average, 7.2 times for efficient transmission over the weak channel. Moreover, we prove that decompressed images can be further used for computer vision applications. Upon decompressing images, we apply machine learning for the classification task. We achieve 92.6% accuracy on an 18-classes unbalanced dataset. The proposed approach is promising for a number of agriculture related applications, including the plant classification, identification of plant diseases, and deviation of plant phenology.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3050084</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4615-3008</orcidid><orcidid>https://orcid.org/0000-0002-9740-6685</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-08, Vol.21 (16), p.17564-17572
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2021_3050084
source IEEE Electronic Library (IEL)
subjects Agriculture
Antarctica
Cameras
Classification
Computer vision
controlled-environment agriculture
Image classification
Image coding
Image compression
Image transmission
Machine learning
Monitoring
Plant diseases
Plant monitoring
Plants (biology)
Remote control
Remote monitoring
title Image Compression and Plants Classification Using Machine Learning in Controlled-Environment Agriculture: Antarctic Station Use Case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Compression%20and%20Plants%20Classification%20Using%20Machine%20Learning%20in%20Controlled-Environment%20Agriculture:%20Antarctic%20Station%20Use%20Case&rft.jtitle=IEEE%20sensors%20journal&rft.au=Nesteruk,%20Sergey&rft.date=2021-08-15&rft.volume=21&rft.issue=16&rft.spage=17564&rft.epage=17572&rft.pages=17564-17572&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3050084&rft_dat=%3Cproquest_RIE%3E2560913430%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560913430&rft_id=info:pmid/&rft_ieee_id=9316732&rfr_iscdi=true