Image Compression and Plants Classification Using Machine Learning in Controlled-Environment Agriculture: Antarctic Station Use Case
In this article, we share our experience in the scope of controlled-environment agriculture automation in the Antarctic station greenhouse facility called EDEN ISS. For remote plant monitoring, control, and maintenance, we solve the problem of plant classification. Due to the inherent communication...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-08, Vol.21 (16), p.17564-17572 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17572 |
---|---|
container_issue | 16 |
container_start_page | 17564 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Nesteruk, Sergey Shadrin, Dmitrii Pukalchik, Mariia Somov, Andrey Zeidler, Conrad Zabel, Paul Schubert, Daniel |
description | In this article, we share our experience in the scope of controlled-environment agriculture automation in the Antarctic station greenhouse facility called EDEN ISS. For remote plant monitoring, control, and maintenance, we solve the problem of plant classification. Due to the inherent communication limitations between Antarctica and Europe, we first propose the image compression mechanism for the data collection. We show that we can compress the images, on average, 7.2 times for efficient transmission over the weak channel. Moreover, we prove that decompressed images can be further used for computer vision applications. Upon decompressing images, we apply machine learning for the classification task. We achieve 92.6% accuracy on an 18-classes unbalanced dataset. The proposed approach is promising for a number of agriculture related applications, including the plant classification, identification of plant diseases, and deviation of plant phenology. |
doi_str_mv | 10.1109/JSEN.2021.3050084 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2021_3050084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9316732</ieee_id><sourcerecordid>2560913430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c4d832565ad0dbc7d0bf02f760dc0a3514da9d8d1f6b2e2b277732a11277daaf3</originalsourceid><addsrcrecordid>eNo9UE1LAzEQXUTBWv0B4iXgeesk2W12vZVStVI_oBa8LdMkW1O22Zqkgnd_uFlaPc1j5n0ML0kuKQwohfLmcT55HjBgdMAhByiyo6RH87xIqciK4w5zSDMu3k-TM-_XALQUueglP9MNrjQZt5ut096b1hK0irw2aIMn4wbjrjYSQ3dZeGNX5Anlh7GazDQ62y2MjXobXNs0WqUT-2VcazfaBjJaOSN3Tdg5fUtGNqCTwUgyD39-MRm9Pk9Oamy8vjjMfrK4m7yNH9LZy_10PJqlkpU8pDJTBWf5MEcFaimFgmUNrBZDUBKQ5zRTWKpC0Xq4ZJotmRCCM6Q0AoVY835yvffduvZzp32o1u3O2RhZRVsoKc84RBbds6RrvXe6rrbObNB9VxSqruyqK7vqyq4OZUfN1V5jtNb__JLTYfyA_wIlwX1F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560913430</pqid></control><display><type>article</type><title>Image Compression and Plants Classification Using Machine Learning in Controlled-Environment Agriculture: Antarctic Station Use Case</title><source>IEEE Electronic Library (IEL)</source><creator>Nesteruk, Sergey ; Shadrin, Dmitrii ; Pukalchik, Mariia ; Somov, Andrey ; Zeidler, Conrad ; Zabel, Paul ; Schubert, Daniel</creator><creatorcontrib>Nesteruk, Sergey ; Shadrin, Dmitrii ; Pukalchik, Mariia ; Somov, Andrey ; Zeidler, Conrad ; Zabel, Paul ; Schubert, Daniel</creatorcontrib><description>In this article, we share our experience in the scope of controlled-environment agriculture automation in the Antarctic station greenhouse facility called EDEN ISS. For remote plant monitoring, control, and maintenance, we solve the problem of plant classification. Due to the inherent communication limitations between Antarctica and Europe, we first propose the image compression mechanism for the data collection. We show that we can compress the images, on average, 7.2 times for efficient transmission over the weak channel. Moreover, we prove that decompressed images can be further used for computer vision applications. Upon decompressing images, we apply machine learning for the classification task. We achieve 92.6% accuracy on an 18-classes unbalanced dataset. The proposed approach is promising for a number of agriculture related applications, including the plant classification, identification of plant diseases, and deviation of plant phenology.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3050084</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Agriculture ; Antarctica ; Cameras ; Classification ; Computer vision ; controlled-environment agriculture ; Image classification ; Image coding ; Image compression ; Image transmission ; Machine learning ; Monitoring ; Plant diseases ; Plant monitoring ; Plants (biology) ; Remote control ; Remote monitoring</subject><ispartof>IEEE sensors journal, 2021-08, Vol.21 (16), p.17564-17572</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c4d832565ad0dbc7d0bf02f760dc0a3514da9d8d1f6b2e2b277732a11277daaf3</citedby><cites>FETCH-LOGICAL-c293t-c4d832565ad0dbc7d0bf02f760dc0a3514da9d8d1f6b2e2b277732a11277daaf3</cites><orcidid>0000-0002-4615-3008 ; 0000-0002-9740-6685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9316732$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9316732$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nesteruk, Sergey</creatorcontrib><creatorcontrib>Shadrin, Dmitrii</creatorcontrib><creatorcontrib>Pukalchik, Mariia</creatorcontrib><creatorcontrib>Somov, Andrey</creatorcontrib><creatorcontrib>Zeidler, Conrad</creatorcontrib><creatorcontrib>Zabel, Paul</creatorcontrib><creatorcontrib>Schubert, Daniel</creatorcontrib><title>Image Compression and Plants Classification Using Machine Learning in Controlled-Environment Agriculture: Antarctic Station Use Case</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this article, we share our experience in the scope of controlled-environment agriculture automation in the Antarctic station greenhouse facility called EDEN ISS. For remote plant monitoring, control, and maintenance, we solve the problem of plant classification. Due to the inherent communication limitations between Antarctica and Europe, we first propose the image compression mechanism for the data collection. We show that we can compress the images, on average, 7.2 times for efficient transmission over the weak channel. Moreover, we prove that decompressed images can be further used for computer vision applications. Upon decompressing images, we apply machine learning for the classification task. We achieve 92.6% accuracy on an 18-classes unbalanced dataset. The proposed approach is promising for a number of agriculture related applications, including the plant classification, identification of plant diseases, and deviation of plant phenology.</description><subject>Agriculture</subject><subject>Antarctica</subject><subject>Cameras</subject><subject>Classification</subject><subject>Computer vision</subject><subject>controlled-environment agriculture</subject><subject>Image classification</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image transmission</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Plant diseases</subject><subject>Plant monitoring</subject><subject>Plants (biology)</subject><subject>Remote control</subject><subject>Remote monitoring</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UE1LAzEQXUTBWv0B4iXgeesk2W12vZVStVI_oBa8LdMkW1O22Zqkgnd_uFlaPc1j5n0ML0kuKQwohfLmcT55HjBgdMAhByiyo6RH87xIqciK4w5zSDMu3k-TM-_XALQUueglP9MNrjQZt5ut096b1hK0irw2aIMn4wbjrjYSQ3dZeGNX5Anlh7GazDQ62y2MjXobXNs0WqUT-2VcazfaBjJaOSN3Tdg5fUtGNqCTwUgyD39-MRm9Pk9Oamy8vjjMfrK4m7yNH9LZy_10PJqlkpU8pDJTBWf5MEcFaimFgmUNrBZDUBKQ5zRTWKpC0Xq4ZJotmRCCM6Q0AoVY835yvffduvZzp32o1u3O2RhZRVsoKc84RBbds6RrvXe6rrbObNB9VxSqruyqK7vqyq4OZUfN1V5jtNb__JLTYfyA_wIlwX1F</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Nesteruk, Sergey</creator><creator>Shadrin, Dmitrii</creator><creator>Pukalchik, Mariia</creator><creator>Somov, Andrey</creator><creator>Zeidler, Conrad</creator><creator>Zabel, Paul</creator><creator>Schubert, Daniel</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4615-3008</orcidid><orcidid>https://orcid.org/0000-0002-9740-6685</orcidid></search><sort><creationdate>20210815</creationdate><title>Image Compression and Plants Classification Using Machine Learning in Controlled-Environment Agriculture: Antarctic Station Use Case</title><author>Nesteruk, Sergey ; Shadrin, Dmitrii ; Pukalchik, Mariia ; Somov, Andrey ; Zeidler, Conrad ; Zabel, Paul ; Schubert, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c4d832565ad0dbc7d0bf02f760dc0a3514da9d8d1f6b2e2b277732a11277daaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agriculture</topic><topic>Antarctica</topic><topic>Cameras</topic><topic>Classification</topic><topic>Computer vision</topic><topic>controlled-environment agriculture</topic><topic>Image classification</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image transmission</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Plant diseases</topic><topic>Plant monitoring</topic><topic>Plants (biology)</topic><topic>Remote control</topic><topic>Remote monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nesteruk, Sergey</creatorcontrib><creatorcontrib>Shadrin, Dmitrii</creatorcontrib><creatorcontrib>Pukalchik, Mariia</creatorcontrib><creatorcontrib>Somov, Andrey</creatorcontrib><creatorcontrib>Zeidler, Conrad</creatorcontrib><creatorcontrib>Zabel, Paul</creatorcontrib><creatorcontrib>Schubert, Daniel</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nesteruk, Sergey</au><au>Shadrin, Dmitrii</au><au>Pukalchik, Mariia</au><au>Somov, Andrey</au><au>Zeidler, Conrad</au><au>Zabel, Paul</au><au>Schubert, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Compression and Plants Classification Using Machine Learning in Controlled-Environment Agriculture: Antarctic Station Use Case</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-08-15</date><risdate>2021</risdate><volume>21</volume><issue>16</issue><spage>17564</spage><epage>17572</epage><pages>17564-17572</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this article, we share our experience in the scope of controlled-environment agriculture automation in the Antarctic station greenhouse facility called EDEN ISS. For remote plant monitoring, control, and maintenance, we solve the problem of plant classification. Due to the inherent communication limitations between Antarctica and Europe, we first propose the image compression mechanism for the data collection. We show that we can compress the images, on average, 7.2 times for efficient transmission over the weak channel. Moreover, we prove that decompressed images can be further used for computer vision applications. Upon decompressing images, we apply machine learning for the classification task. We achieve 92.6% accuracy on an 18-classes unbalanced dataset. The proposed approach is promising for a number of agriculture related applications, including the plant classification, identification of plant diseases, and deviation of plant phenology.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3050084</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4615-3008</orcidid><orcidid>https://orcid.org/0000-0002-9740-6685</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-08, Vol.21 (16), p.17564-17572 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2021_3050084 |
source | IEEE Electronic Library (IEL) |
subjects | Agriculture Antarctica Cameras Classification Computer vision controlled-environment agriculture Image classification Image coding Image compression Image transmission Machine learning Monitoring Plant diseases Plant monitoring Plants (biology) Remote control Remote monitoring |
title | Image Compression and Plants Classification Using Machine Learning in Controlled-Environment Agriculture: Antarctic Station Use Case |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A19%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Compression%20and%20Plants%20Classification%20Using%20Machine%20Learning%20in%20Controlled-Environment%20Agriculture:%20Antarctic%20Station%20Use%20Case&rft.jtitle=IEEE%20sensors%20journal&rft.au=Nesteruk,%20Sergey&rft.date=2021-08-15&rft.volume=21&rft.issue=16&rft.spage=17564&rft.epage=17572&rft.pages=17564-17572&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3050084&rft_dat=%3Cproquest_RIE%3E2560913430%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560913430&rft_id=info:pmid/&rft_ieee_id=9316732&rfr_iscdi=true |