Reliability and Delay Trade-Off Analysis of Unslotted IEEE 802.15.4 Sensor Network for Shipboard Environment
Wireless sensor network technology has been widely studied and applied in different fields. The applications in shipborne wireless sensor networks face serious physical-layer packet loss problems due to the wireless signals blocking by steel structure and wireless channel interference. The MAC-layer...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-01, Vol.21 (2), p.2400-2411 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2411 |
---|---|
container_issue | 2 |
container_start_page | 2400 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Zeng, Xuming Liu, Kezhong Ma, Jie Chen, Mozi Yu, Ming |
description | Wireless sensor network technology has been widely studied and applied in different fields. The applications in shipborne wireless sensor networks face serious physical-layer packet loss problems due to the wireless signals blocking by steel structure and wireless channel interference. The MAC-layer retransmission mechanism can reduce the packet loss rate but increases latency. So it's necessary to analyze the performance of reliability and latency for different applications in shipborne wireless sensor networks. In this article, first, we analyze the distribution of the physical-layer packet loss rate for IEEE 802.15.4 sensor network in ship indoor environment. We also present an analysis model based on three-dimensional Markov chain for unslotted CSMA/CA of IEEE 802.15.4 sensor network considering physical-layer packet loss rate and MAC-layer retransmission. We evaluate the effects of three MAC parameters, \textit {macMinBE} , \textit {macMaxCSMABackoffs} , and \textit {macMaxFrameRetries} , on average delay and reliability. The percentage error of the analytical model for delay and reliability are 2.09% and 1.37%, respectively. Our work provides trade-off analysis between average delay and average reliability using the maximum number of retransmission based on the measured data of physical-layer packet loss rate in shipboard environment for different QoS requirements. |
doi_str_mv | 10.1109/JSEN.2020.3021214 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2020_3021214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9184849</ieee_id><sourcerecordid>2471916705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c9a22eb7759ac957b2baa70aff975cf6c56bd9228c9f8106153ce34780d7bdd63</originalsourceid><addsrcrecordid>eNo9kMFLwzAYxYMoOKd_gHgJeG5N0rRJjmNWnYwN3AbeQpommNk1M-mU_vd2TDx97_De43s_AG4xSjFG4uF1VS5SgghKM0QwwfQMjHCe8wQzys-POkMJzdj7JbiKcYsQFixnI9C8mcapyjWu66Fqa_hoGtXDdVC1SZbWwkmrmj66CL2FmzY2vutMDWdlWUKOSIrzlMKVaaMPcGG6Hx8-oR306sPtK69CDcv22wXf7kzbXYMLq5pobv7uGGyeyvX0JZkvn2fTyTzRRGRdooUixFSM5UJpkbOKVEoxpKwdfta20HlR1YIQroXlGBXDNm0yyjiqWVXXRTYG96feffBfBxM7ufWHMAyJklCGBS4YygcXPrl08DEGY-U-uJ0KvcRIHqHKI1R5hCr_oA6Zu1PGGWP-_QJzyqnIfgFJGHID</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471916705</pqid></control><display><type>article</type><title>Reliability and Delay Trade-Off Analysis of Unslotted IEEE 802.15.4 Sensor Network for Shipboard Environment</title><source>IEEE Electronic Library (IEL)</source><creator>Zeng, Xuming ; Liu, Kezhong ; Ma, Jie ; Chen, Mozi ; Yu, Ming</creator><creatorcontrib>Zeng, Xuming ; Liu, Kezhong ; Ma, Jie ; Chen, Mozi ; Yu, Ming</creatorcontrib><description><![CDATA[Wireless sensor network technology has been widely studied and applied in different fields. The applications in shipborne wireless sensor networks face serious physical-layer packet loss problems due to the wireless signals blocking by steel structure and wireless channel interference. The MAC-layer retransmission mechanism can reduce the packet loss rate but increases latency. So it's necessary to analyze the performance of reliability and latency for different applications in shipborne wireless sensor networks. In this article, first, we analyze the distribution of the physical-layer packet loss rate for IEEE 802.15.4 sensor network in ship indoor environment. We also present an analysis model based on three-dimensional Markov chain for unslotted CSMA/CA of IEEE 802.15.4 sensor network considering physical-layer packet loss rate and MAC-layer retransmission. We evaluate the effects of three MAC parameters, <inline-formula> <tex-math notation="LaTeX">\textit {macMinBE} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\textit {macMaxCSMABackoffs} </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\textit {macMaxFrameRetries} </tex-math></inline-formula>, on average delay and reliability. The percentage error of the analytical model for delay and reliability are 2.09% and 1.37%, respectively. Our work provides trade-off analysis between average delay and average reliability using the maximum number of retransmission based on the measured data of physical-layer packet loss rate in shipboard environment for different QoS requirements.]]></description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3021214</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Delay ; Delays ; Error analysis ; IEEE 802.15.4 ; Indoor environments ; Markov chain ; Markov chains ; Markov processes ; Mathematical models ; Network latency ; Network reliability ; Packet loss ; Reliability ; Reliability analysis ; Sensors ; Steel structures ; Three dimensional models ; Tradeoffs ; unslotted CSMA/CA ; Wireless networks ; Wireless sensor networks ; ZigBee</subject><ispartof>IEEE sensors journal, 2021-01, Vol.21 (2), p.2400-2411</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c9a22eb7759ac957b2baa70aff975cf6c56bd9228c9f8106153ce34780d7bdd63</citedby><cites>FETCH-LOGICAL-c293t-c9a22eb7759ac957b2baa70aff975cf6c56bd9228c9f8106153ce34780d7bdd63</cites><orcidid>0000-0002-6758-3314 ; 0000-0002-6868-2568 ; 0000-0002-7658-6584 ; 0000-0002-1085-7556 ; 0000-0001-5626-0088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9184849$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9184849$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zeng, Xuming</creatorcontrib><creatorcontrib>Liu, Kezhong</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Chen, Mozi</creatorcontrib><creatorcontrib>Yu, Ming</creatorcontrib><title>Reliability and Delay Trade-Off Analysis of Unslotted IEEE 802.15.4 Sensor Network for Shipboard Environment</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description><![CDATA[Wireless sensor network technology has been widely studied and applied in different fields. The applications in shipborne wireless sensor networks face serious physical-layer packet loss problems due to the wireless signals blocking by steel structure and wireless channel interference. The MAC-layer retransmission mechanism can reduce the packet loss rate but increases latency. So it's necessary to analyze the performance of reliability and latency for different applications in shipborne wireless sensor networks. In this article, first, we analyze the distribution of the physical-layer packet loss rate for IEEE 802.15.4 sensor network in ship indoor environment. We also present an analysis model based on three-dimensional Markov chain for unslotted CSMA/CA of IEEE 802.15.4 sensor network considering physical-layer packet loss rate and MAC-layer retransmission. We evaluate the effects of three MAC parameters, <inline-formula> <tex-math notation="LaTeX">\textit {macMinBE} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\textit {macMaxCSMABackoffs} </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\textit {macMaxFrameRetries} </tex-math></inline-formula>, on average delay and reliability. The percentage error of the analytical model for delay and reliability are 2.09% and 1.37%, respectively. Our work provides trade-off analysis between average delay and average reliability using the maximum number of retransmission based on the measured data of physical-layer packet loss rate in shipboard environment for different QoS requirements.]]></description><subject>Delay</subject><subject>Delays</subject><subject>Error analysis</subject><subject>IEEE 802.15.4</subject><subject>Indoor environments</subject><subject>Markov chain</subject><subject>Markov chains</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Network latency</subject><subject>Network reliability</subject><subject>Packet loss</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Sensors</subject><subject>Steel structures</subject><subject>Three dimensional models</subject><subject>Tradeoffs</subject><subject>unslotted CSMA/CA</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><subject>ZigBee</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAYxYMoOKd_gHgJeG5N0rRJjmNWnYwN3AbeQpommNk1M-mU_vd2TDx97_De43s_AG4xSjFG4uF1VS5SgghKM0QwwfQMjHCe8wQzys-POkMJzdj7JbiKcYsQFixnI9C8mcapyjWu66Fqa_hoGtXDdVC1SZbWwkmrmj66CL2FmzY2vutMDWdlWUKOSIrzlMKVaaMPcGG6Hx8-oR306sPtK69CDcv22wXf7kzbXYMLq5pobv7uGGyeyvX0JZkvn2fTyTzRRGRdooUixFSM5UJpkbOKVEoxpKwdfta20HlR1YIQroXlGBXDNm0yyjiqWVXXRTYG96feffBfBxM7ufWHMAyJklCGBS4YygcXPrl08DEGY-U-uJ0KvcRIHqHKI1R5hCr_oA6Zu1PGGWP-_QJzyqnIfgFJGHID</recordid><startdate>20210115</startdate><enddate>20210115</enddate><creator>Zeng, Xuming</creator><creator>Liu, Kezhong</creator><creator>Ma, Jie</creator><creator>Chen, Mozi</creator><creator>Yu, Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6758-3314</orcidid><orcidid>https://orcid.org/0000-0002-6868-2568</orcidid><orcidid>https://orcid.org/0000-0002-7658-6584</orcidid><orcidid>https://orcid.org/0000-0002-1085-7556</orcidid><orcidid>https://orcid.org/0000-0001-5626-0088</orcidid></search><sort><creationdate>20210115</creationdate><title>Reliability and Delay Trade-Off Analysis of Unslotted IEEE 802.15.4 Sensor Network for Shipboard Environment</title><author>Zeng, Xuming ; Liu, Kezhong ; Ma, Jie ; Chen, Mozi ; Yu, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c9a22eb7759ac957b2baa70aff975cf6c56bd9228c9f8106153ce34780d7bdd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Delay</topic><topic>Delays</topic><topic>Error analysis</topic><topic>IEEE 802.15.4</topic><topic>Indoor environments</topic><topic>Markov chain</topic><topic>Markov chains</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Network latency</topic><topic>Network reliability</topic><topic>Packet loss</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Sensors</topic><topic>Steel structures</topic><topic>Three dimensional models</topic><topic>Tradeoffs</topic><topic>unslotted CSMA/CA</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><topic>ZigBee</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Xuming</creatorcontrib><creatorcontrib>Liu, Kezhong</creatorcontrib><creatorcontrib>Ma, Jie</creatorcontrib><creatorcontrib>Chen, Mozi</creatorcontrib><creatorcontrib>Yu, Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeng, Xuming</au><au>Liu, Kezhong</au><au>Ma, Jie</au><au>Chen, Mozi</au><au>Yu, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability and Delay Trade-Off Analysis of Unslotted IEEE 802.15.4 Sensor Network for Shipboard Environment</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-01-15</date><risdate>2021</risdate><volume>21</volume><issue>2</issue><spage>2400</spage><epage>2411</epage><pages>2400-2411</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract><![CDATA[Wireless sensor network technology has been widely studied and applied in different fields. The applications in shipborne wireless sensor networks face serious physical-layer packet loss problems due to the wireless signals blocking by steel structure and wireless channel interference. The MAC-layer retransmission mechanism can reduce the packet loss rate but increases latency. So it's necessary to analyze the performance of reliability and latency for different applications in shipborne wireless sensor networks. In this article, first, we analyze the distribution of the physical-layer packet loss rate for IEEE 802.15.4 sensor network in ship indoor environment. We also present an analysis model based on three-dimensional Markov chain for unslotted CSMA/CA of IEEE 802.15.4 sensor network considering physical-layer packet loss rate and MAC-layer retransmission. We evaluate the effects of three MAC parameters, <inline-formula> <tex-math notation="LaTeX">\textit {macMinBE} </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">\textit {macMaxCSMABackoffs} </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">\textit {macMaxFrameRetries} </tex-math></inline-formula>, on average delay and reliability. The percentage error of the analytical model for delay and reliability are 2.09% and 1.37%, respectively. Our work provides trade-off analysis between average delay and average reliability using the maximum number of retransmission based on the measured data of physical-layer packet loss rate in shipboard environment for different QoS requirements.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3021214</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6758-3314</orcidid><orcidid>https://orcid.org/0000-0002-6868-2568</orcidid><orcidid>https://orcid.org/0000-0002-7658-6584</orcidid><orcidid>https://orcid.org/0000-0002-1085-7556</orcidid><orcidid>https://orcid.org/0000-0001-5626-0088</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-01, Vol.21 (2), p.2400-2411 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2020_3021214 |
source | IEEE Electronic Library (IEL) |
subjects | Delay Delays Error analysis IEEE 802.15.4 Indoor environments Markov chain Markov chains Markov processes Mathematical models Network latency Network reliability Packet loss Reliability Reliability analysis Sensors Steel structures Three dimensional models Tradeoffs unslotted CSMA/CA Wireless networks Wireless sensor networks ZigBee |
title | Reliability and Delay Trade-Off Analysis of Unslotted IEEE 802.15.4 Sensor Network for Shipboard Environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A40%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%20and%20Delay%20Trade-Off%20Analysis%20of%20Unslotted%20IEEE%20802.15.4%20Sensor%20Network%20for%20Shipboard%20Environment&rft.jtitle=IEEE%20sensors%20journal&rft.au=Zeng,%20Xuming&rft.date=2021-01-15&rft.volume=21&rft.issue=2&rft.spage=2400&rft.epage=2411&rft.pages=2400-2411&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3021214&rft_dat=%3Cproquest_RIE%3E2471916705%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471916705&rft_id=info:pmid/&rft_ieee_id=9184849&rfr_iscdi=true |