Plasmonic Metamaterial-Based Label-Free Microfluidic Microwave Sensor for Aqueous Biological Applications

This paper reports a label-free, highly sensitive plasmonic metamaterial inspired multi-band planar microwave sensor for aqueous biological samples. The proposed sensor consists of a spoof surface whispering gallery mode (SS-WGM) resonator connected to a spoof surface plasmons polariton (SSPP) trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2020-09, Vol.20 (18), p.10582-10590
Hauptverfasser: Pandit, Nidhi, Jaiswal, Rahul Kumar, Pathak, Nagendra Prasad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10590
container_issue 18
container_start_page 10582
container_title IEEE sensors journal
container_volume 20
creator Pandit, Nidhi
Jaiswal, Rahul Kumar
Pathak, Nagendra Prasad
description This paper reports a label-free, highly sensitive plasmonic metamaterial inspired multi-band planar microwave sensor for aqueous biological samples. The proposed sensor consists of a spoof surface whispering gallery mode (SS-WGM) resonator connected to a spoof surface plasmons polariton (SSPP) transmission line in a special arrangement. The SS-WGM resonator of the proposed sensor is capable of localizing the electromagnetic (EM) field into a specific region due to its slow-wave propagation characteristics. This feature enhances the interaction time of the sample under test (SUT) with EM wave and offers higher sensitivity. The EM wave localization enables the proposed design to sense the small volume of the bio-samples. This is required in the case of the aqueous samples because a large volume of SUT absorbs radio frequency (RF) signals and reduces the {Q} -factor of the sensors. The microfluidic approach has been adopted as it supports a small sample size. The proposed sensor is numerically analyzed and optimized for multi-band capability using full-wave EM simulation. To ensure maximum sensitivity, the microfluidic channel is kept appropriately above the hot-spot of the sensor. Glucose aqueous solution is being used here as a biological sample. Experimental validation of the proposed approach has been done using different concentrations of the SUT. The proposed sensor offers a maximum measured sensitivity of 77.3e −02 MHz/mgml −1 , which shows a fair improvement in the sensitivity as compared to the state-of-the-art. It is anticipated that the proposed microfluidic planar microwave sensor is paving the path for the development of the microwave-based modern lab-on-chip system arrangement.
doi_str_mv 10.1109/JSEN.2020.2994061
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2020_2994061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9091803</ieee_id><sourcerecordid>2434954703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-1eafc1367a8d075b115dff4e637447c1833fd983cd975d7b8408f120cd82361b3</originalsourceid><addsrcrecordid>eNo9UF1LwzAULaLgnP4A8aXgc2dukzbJ4zY2P9hUmIJvJU0TyciambSK_96UDR8u914459x7TpJcA5oAIH73tFk8T3KUo0nOOUElnCQjKAqWASXsdJgxygimH-fJRQhbhIDTgo4S82pF2LnWyHStOrETnfJG2GwmgmrSlaiVzZZeqXRtpHfa9qYZoMPyI75VulFtcD7VsaZfvXJ9SGfGWfdppLDpdL-3ceiMa8NlcqaFDerq2MfJ-3LxNn_IVi_3j_PpKpM5x10GSmgJuKSCNYgWNUDRaE1UiSkhVALDWDecYdlEAw2tGUFMQ45kw3JcQo3Hye1Bd-9d_Ch01db1vo0nq5xgwgtCEY4oOKCikRC80tXem53wvxWgaki0GhKthkSrY6KRc3PgGKXUP54jDiwq_gETUXK2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434954703</pqid></control><display><type>article</type><title>Plasmonic Metamaterial-Based Label-Free Microfluidic Microwave Sensor for Aqueous Biological Applications</title><source>IEEE Xplore</source><creator>Pandit, Nidhi ; Jaiswal, Rahul Kumar ; Pathak, Nagendra Prasad</creator><creatorcontrib>Pandit, Nidhi ; Jaiswal, Rahul Kumar ; Pathak, Nagendra Prasad</creatorcontrib><description>This paper reports a label-free, highly sensitive plasmonic metamaterial inspired multi-band planar microwave sensor for aqueous biological samples. The proposed sensor consists of a spoof surface whispering gallery mode (SS-WGM) resonator connected to a spoof surface plasmons polariton (SSPP) transmission line in a special arrangement. The SS-WGM resonator of the proposed sensor is capable of localizing the electromagnetic (EM) field into a specific region due to its slow-wave propagation characteristics. This feature enhances the interaction time of the sample under test (SUT) with EM wave and offers higher sensitivity. The EM wave localization enables the proposed design to sense the small volume of the bio-samples. This is required in the case of the aqueous samples because a large volume of SUT absorbs radio frequency (RF) signals and reduces the &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{Q} &lt;/tex-math&gt;&lt;/inline-formula&gt;-factor of the sensors. The microfluidic approach has been adopted as it supports a small sample size. The proposed sensor is numerically analyzed and optimized for multi-band capability using full-wave EM simulation. To ensure maximum sensitivity, the microfluidic channel is kept appropriately above the hot-spot of the sensor. Glucose aqueous solution is being used here as a biological sample. Experimental validation of the proposed approach has been done using different concentrations of the SUT. The proposed sensor offers a maximum measured sensitivity of 77.3e −02 MHz/mgml −1 , which shows a fair improvement in the sensitivity as compared to the state-of-the-art. It is anticipated that the proposed microfluidic planar microwave sensor is paving the path for the development of the microwave-based modern lab-on-chip system arrangement.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.2994061</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aqueous solutions ; Bio-sensor ; Biological properties ; Computer simulation ; Metamaterials ; Microfluidics ; microwave ; Microwave sensors ; Microwave theory and techniques ; Optical resonators ; Optical surface waves ; Permittivity ; plasmonic metamaterial ; Plasmonics ; Plasmons ; Polaritons ; Radio frequency ; Radio signals ; Resonators ; Sensitivity ; Sensors ; spoof surface WGM ; Transmission lines ; Wave propagation</subject><ispartof>IEEE sensors journal, 2020-09, Vol.20 (18), p.10582-10590</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-1eafc1367a8d075b115dff4e637447c1833fd983cd975d7b8408f120cd82361b3</citedby><cites>FETCH-LOGICAL-c293t-1eafc1367a8d075b115dff4e637447c1833fd983cd975d7b8408f120cd82361b3</cites><orcidid>0000-0002-1461-0921 ; 0000-0001-8501-0889 ; 0000-0003-3553-6780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9091803$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9091803$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pandit, Nidhi</creatorcontrib><creatorcontrib>Jaiswal, Rahul Kumar</creatorcontrib><creatorcontrib>Pathak, Nagendra Prasad</creatorcontrib><title>Plasmonic Metamaterial-Based Label-Free Microfluidic Microwave Sensor for Aqueous Biological Applications</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This paper reports a label-free, highly sensitive plasmonic metamaterial inspired multi-band planar microwave sensor for aqueous biological samples. The proposed sensor consists of a spoof surface whispering gallery mode (SS-WGM) resonator connected to a spoof surface plasmons polariton (SSPP) transmission line in a special arrangement. The SS-WGM resonator of the proposed sensor is capable of localizing the electromagnetic (EM) field into a specific region due to its slow-wave propagation characteristics. This feature enhances the interaction time of the sample under test (SUT) with EM wave and offers higher sensitivity. The EM wave localization enables the proposed design to sense the small volume of the bio-samples. This is required in the case of the aqueous samples because a large volume of SUT absorbs radio frequency (RF) signals and reduces the &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{Q} &lt;/tex-math&gt;&lt;/inline-formula&gt;-factor of the sensors. The microfluidic approach has been adopted as it supports a small sample size. The proposed sensor is numerically analyzed and optimized for multi-band capability using full-wave EM simulation. To ensure maximum sensitivity, the microfluidic channel is kept appropriately above the hot-spot of the sensor. Glucose aqueous solution is being used here as a biological sample. Experimental validation of the proposed approach has been done using different concentrations of the SUT. The proposed sensor offers a maximum measured sensitivity of 77.3e −02 MHz/mgml −1 , which shows a fair improvement in the sensitivity as compared to the state-of-the-art. It is anticipated that the proposed microfluidic planar microwave sensor is paving the path for the development of the microwave-based modern lab-on-chip system arrangement.</description><subject>Aqueous solutions</subject><subject>Bio-sensor</subject><subject>Biological properties</subject><subject>Computer simulation</subject><subject>Metamaterials</subject><subject>Microfluidics</subject><subject>microwave</subject><subject>Microwave sensors</subject><subject>Microwave theory and techniques</subject><subject>Optical resonators</subject><subject>Optical surface waves</subject><subject>Permittivity</subject><subject>plasmonic metamaterial</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>Polaritons</subject><subject>Radio frequency</subject><subject>Radio signals</subject><subject>Resonators</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>spoof surface WGM</subject><subject>Transmission lines</subject><subject>Wave propagation</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UF1LwzAULaLgnP4A8aXgc2dukzbJ4zY2P9hUmIJvJU0TyciambSK_96UDR8u914459x7TpJcA5oAIH73tFk8T3KUo0nOOUElnCQjKAqWASXsdJgxygimH-fJRQhbhIDTgo4S82pF2LnWyHStOrETnfJG2GwmgmrSlaiVzZZeqXRtpHfa9qYZoMPyI75VulFtcD7VsaZfvXJ9SGfGWfdppLDpdL-3ceiMa8NlcqaFDerq2MfJ-3LxNn_IVi_3j_PpKpM5x10GSmgJuKSCNYgWNUDRaE1UiSkhVALDWDecYdlEAw2tGUFMQ45kw3JcQo3Hye1Bd-9d_Ch01db1vo0nq5xgwgtCEY4oOKCikRC80tXem53wvxWgaki0GhKthkSrY6KRc3PgGKXUP54jDiwq_gETUXK2</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Pandit, Nidhi</creator><creator>Jaiswal, Rahul Kumar</creator><creator>Pathak, Nagendra Prasad</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1461-0921</orcidid><orcidid>https://orcid.org/0000-0001-8501-0889</orcidid><orcidid>https://orcid.org/0000-0003-3553-6780</orcidid></search><sort><creationdate>20200915</creationdate><title>Plasmonic Metamaterial-Based Label-Free Microfluidic Microwave Sensor for Aqueous Biological Applications</title><author>Pandit, Nidhi ; Jaiswal, Rahul Kumar ; Pathak, Nagendra Prasad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-1eafc1367a8d075b115dff4e637447c1833fd983cd975d7b8408f120cd82361b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aqueous solutions</topic><topic>Bio-sensor</topic><topic>Biological properties</topic><topic>Computer simulation</topic><topic>Metamaterials</topic><topic>Microfluidics</topic><topic>microwave</topic><topic>Microwave sensors</topic><topic>Microwave theory and techniques</topic><topic>Optical resonators</topic><topic>Optical surface waves</topic><topic>Permittivity</topic><topic>plasmonic metamaterial</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>Polaritons</topic><topic>Radio frequency</topic><topic>Radio signals</topic><topic>Resonators</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>spoof surface WGM</topic><topic>Transmission lines</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pandit, Nidhi</creatorcontrib><creatorcontrib>Jaiswal, Rahul Kumar</creatorcontrib><creatorcontrib>Pathak, Nagendra Prasad</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pandit, Nidhi</au><au>Jaiswal, Rahul Kumar</au><au>Pathak, Nagendra Prasad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmonic Metamaterial-Based Label-Free Microfluidic Microwave Sensor for Aqueous Biological Applications</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2020-09-15</date><risdate>2020</risdate><volume>20</volume><issue>18</issue><spage>10582</spage><epage>10590</epage><pages>10582-10590</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This paper reports a label-free, highly sensitive plasmonic metamaterial inspired multi-band planar microwave sensor for aqueous biological samples. The proposed sensor consists of a spoof surface whispering gallery mode (SS-WGM) resonator connected to a spoof surface plasmons polariton (SSPP) transmission line in a special arrangement. The SS-WGM resonator of the proposed sensor is capable of localizing the electromagnetic (EM) field into a specific region due to its slow-wave propagation characteristics. This feature enhances the interaction time of the sample under test (SUT) with EM wave and offers higher sensitivity. The EM wave localization enables the proposed design to sense the small volume of the bio-samples. This is required in the case of the aqueous samples because a large volume of SUT absorbs radio frequency (RF) signals and reduces the &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{Q} &lt;/tex-math&gt;&lt;/inline-formula&gt;-factor of the sensors. The microfluidic approach has been adopted as it supports a small sample size. The proposed sensor is numerically analyzed and optimized for multi-band capability using full-wave EM simulation. To ensure maximum sensitivity, the microfluidic channel is kept appropriately above the hot-spot of the sensor. Glucose aqueous solution is being used here as a biological sample. Experimental validation of the proposed approach has been done using different concentrations of the SUT. The proposed sensor offers a maximum measured sensitivity of 77.3e −02 MHz/mgml −1 , which shows a fair improvement in the sensitivity as compared to the state-of-the-art. It is anticipated that the proposed microfluidic planar microwave sensor is paving the path for the development of the microwave-based modern lab-on-chip system arrangement.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.2994061</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1461-0921</orcidid><orcidid>https://orcid.org/0000-0001-8501-0889</orcidid><orcidid>https://orcid.org/0000-0003-3553-6780</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2020-09, Vol.20 (18), p.10582-10590
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2020_2994061
source IEEE Xplore
subjects Aqueous solutions
Bio-sensor
Biological properties
Computer simulation
Metamaterials
Microfluidics
microwave
Microwave sensors
Microwave theory and techniques
Optical resonators
Optical surface waves
Permittivity
plasmonic metamaterial
Plasmonics
Plasmons
Polaritons
Radio frequency
Radio signals
Resonators
Sensitivity
Sensors
spoof surface WGM
Transmission lines
Wave propagation
title Plasmonic Metamaterial-Based Label-Free Microfluidic Microwave Sensor for Aqueous Biological Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmonic%20Metamaterial-Based%20Label-Free%20Microfluidic%20Microwave%20Sensor%20for%20Aqueous%20Biological%20Applications&rft.jtitle=IEEE%20sensors%20journal&rft.au=Pandit,%20Nidhi&rft.date=2020-09-15&rft.volume=20&rft.issue=18&rft.spage=10582&rft.epage=10590&rft.pages=10582-10590&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.2994061&rft_dat=%3Cproquest_RIE%3E2434954703%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434954703&rft_id=info:pmid/&rft_ieee_id=9091803&rfr_iscdi=true