Curcumin Nanocrystals as Photodynamical Sensor Monitoring Ultraviolet Accelerated Aging of HDPE

In this work, curcumin nanocrystals (CCN) was used as fluorescence probes for monitoring the accelerated aging of high density polyethylene (HDPE) used in insulation of high-voltage cables. CCN has been synthesized and incorporated into HDPE matrix using hydrothermal process (HydP) at 202.65 kPa and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2020-01, Vol.20 (1), p.155-161
Hauptverfasser: de Araujo Rocha, Wilson Sergio, Grilo Rodrigues, Jose Carlos, Exposito de Queiroz, Alfredo Antonio Alencar, de Queiroz, Alvaro Antonio Alencar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 161
container_issue 1
container_start_page 155
container_title IEEE sensors journal
container_volume 20
creator de Araujo Rocha, Wilson Sergio
Grilo Rodrigues, Jose Carlos
Exposito de Queiroz, Alfredo Antonio Alencar
de Queiroz, Alvaro Antonio Alencar
description In this work, curcumin nanocrystals (CCN) was used as fluorescence probes for monitoring the accelerated aging of high density polyethylene (HDPE) used in insulation of high-voltage cables. CCN has been synthesized and incorporated into HDPE matrix using hydrothermal process (HydP) at 202.65 kPa and temperatures of 60 °C and 120 °C. The apparent activation energy (E A ) for CCN incorporation into HDPE matrix was 54.4 kJ/mol. The resulting nanocomposite HDPE-CCN has been characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and fluorescence spectroscopy (FS). The crystallinity of HDPE and HDPE-CCN determined by DSC were 71.27% and 70.30% respectively, suggesting that the presence of CCN does not modify significantly the microstructure of HDPE. Accelerated aging of HDPE-CCN samples was carried out and the stress to break (ε b ), Young's modulus (E) and fluorescence intensity (FI) were used as measurements of HDPE degradation. Mechanical properties (ε b , E) and FI measurements do correlate with age-related material degradation on the HDPE samples examined.
doi_str_mv 10.1109/JSEN.2019.2940982
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2019_2940982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8835903</ieee_id><sourcerecordid>2333540083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-802f9bad311f728369660b2ad131e50e24ac34cafffe3cff62f0e5effe8daca3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_Nx34kx1KrVWottIK3kGYndct2U5Os0H_vLhVPM8M87ww8CN1SMqKUyIfX1XQxYoTKEZMpkYKdoQHNMpHQIhXnfc9JkvLi8xJdhbAjHVlkxQCpSetNu68avNCNM_4Yoq4D1gEvv1x05bHR-8roGq-gCc7jN9dU0fmq2eKPOnr9U7kaIh4bAzV4HaHE422_dRbPHpfTa3Rhu4Nw81eHaP00XU9myfz9-WUynieGSR4TQZiVG11ySm3BBM9lnpMN0yXlFDICLNWGp0Zba4Eba3NmCWTQTaLURvMhuj-dPXj33UKIauda33QfFeOcZykhgncUPVHGuxA8WHXw1V77o6JE9RpVr1H1GtWfxi5zd8pUAPDPC8EzSTj_BXJKcGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2333540083</pqid></control><display><type>article</type><title>Curcumin Nanocrystals as Photodynamical Sensor Monitoring Ultraviolet Accelerated Aging of HDPE</title><source>IEEE Electronic Library (IEL)</source><creator>de Araujo Rocha, Wilson Sergio ; Grilo Rodrigues, Jose Carlos ; Exposito de Queiroz, Alfredo Antonio Alencar ; de Queiroz, Alvaro Antonio Alencar</creator><creatorcontrib>de Araujo Rocha, Wilson Sergio ; Grilo Rodrigues, Jose Carlos ; Exposito de Queiroz, Alfredo Antonio Alencar ; de Queiroz, Alvaro Antonio Alencar</creatorcontrib><description>In this work, curcumin nanocrystals (CCN) was used as fluorescence probes for monitoring the accelerated aging of high density polyethylene (HDPE) used in insulation of high-voltage cables. CCN has been synthesized and incorporated into HDPE matrix using hydrothermal process (HydP) at 202.65 kPa and temperatures of 60 °C and 120 °C. The apparent activation energy (E A ) for CCN incorporation into HDPE matrix was 54.4 kJ/mol. The resulting nanocomposite HDPE-CCN has been characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and fluorescence spectroscopy (FS). The crystallinity of HDPE and HDPE-CCN determined by DSC were 71.27% and 70.30% respectively, suggesting that the presence of CCN does not modify significantly the microstructure of HDPE. Accelerated aging of HDPE-CCN samples was carried out and the stress to break (ε b ), Young's modulus (E) and fluorescence intensity (FI) were used as measurements of HDPE degradation. Mechanical properties (ε b , E) and FI measurements do correlate with age-related material degradation on the HDPE samples examined.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2940982</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accelerated aging ; Aging ; Cables ; Correlation analysis ; Degradation ; Differential scanning calorimetry ; Fluorescence ; Fluorescent indicators ; High density polyethylenes ; Insulation ; Mechanical properties ; Modulus of elasticity ; Monitoring ; Nanocomposites ; Nanocrystals ; nanostructured materials ; optical sensors ; polyethylene ; Polymers ; Powders</subject><ispartof>IEEE sensors journal, 2020-01, Vol.20 (1), p.155-161</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-802f9bad311f728369660b2ad131e50e24ac34cafffe3cff62f0e5effe8daca3</citedby><cites>FETCH-LOGICAL-c293t-802f9bad311f728369660b2ad131e50e24ac34cafffe3cff62f0e5effe8daca3</cites><orcidid>0000-0002-1769-7022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8835903$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8835903$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>de Araujo Rocha, Wilson Sergio</creatorcontrib><creatorcontrib>Grilo Rodrigues, Jose Carlos</creatorcontrib><creatorcontrib>Exposito de Queiroz, Alfredo Antonio Alencar</creatorcontrib><creatorcontrib>de Queiroz, Alvaro Antonio Alencar</creatorcontrib><title>Curcumin Nanocrystals as Photodynamical Sensor Monitoring Ultraviolet Accelerated Aging of HDPE</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this work, curcumin nanocrystals (CCN) was used as fluorescence probes for monitoring the accelerated aging of high density polyethylene (HDPE) used in insulation of high-voltage cables. CCN has been synthesized and incorporated into HDPE matrix using hydrothermal process (HydP) at 202.65 kPa and temperatures of 60 °C and 120 °C. The apparent activation energy (E A ) for CCN incorporation into HDPE matrix was 54.4 kJ/mol. The resulting nanocomposite HDPE-CCN has been characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and fluorescence spectroscopy (FS). The crystallinity of HDPE and HDPE-CCN determined by DSC were 71.27% and 70.30% respectively, suggesting that the presence of CCN does not modify significantly the microstructure of HDPE. Accelerated aging of HDPE-CCN samples was carried out and the stress to break (ε b ), Young's modulus (E) and fluorescence intensity (FI) were used as measurements of HDPE degradation. Mechanical properties (ε b , E) and FI measurements do correlate with age-related material degradation on the HDPE samples examined.</description><subject>Accelerated aging</subject><subject>Aging</subject><subject>Cables</subject><subject>Correlation analysis</subject><subject>Degradation</subject><subject>Differential scanning calorimetry</subject><subject>Fluorescence</subject><subject>Fluorescent indicators</subject><subject>High density polyethylenes</subject><subject>Insulation</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Monitoring</subject><subject>Nanocomposites</subject><subject>Nanocrystals</subject><subject>nanostructured materials</subject><subject>optical sensors</subject><subject>polyethylene</subject><subject>Polymers</subject><subject>Powders</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_Nx34kx1KrVWottIK3kGYndct2U5Os0H_vLhVPM8M87ww8CN1SMqKUyIfX1XQxYoTKEZMpkYKdoQHNMpHQIhXnfc9JkvLi8xJdhbAjHVlkxQCpSetNu68avNCNM_4Yoq4D1gEvv1x05bHR-8roGq-gCc7jN9dU0fmq2eKPOnr9U7kaIh4bAzV4HaHE422_dRbPHpfTa3Rhu4Nw81eHaP00XU9myfz9-WUynieGSR4TQZiVG11ySm3BBM9lnpMN0yXlFDICLNWGp0Zba4Eba3NmCWTQTaLURvMhuj-dPXj33UKIauda33QfFeOcZykhgncUPVHGuxA8WHXw1V77o6JE9RpVr1H1GtWfxi5zd8pUAPDPC8EzSTj_BXJKcGA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>de Araujo Rocha, Wilson Sergio</creator><creator>Grilo Rodrigues, Jose Carlos</creator><creator>Exposito de Queiroz, Alfredo Antonio Alencar</creator><creator>de Queiroz, Alvaro Antonio Alencar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1769-7022</orcidid></search><sort><creationdate>20200101</creationdate><title>Curcumin Nanocrystals as Photodynamical Sensor Monitoring Ultraviolet Accelerated Aging of HDPE</title><author>de Araujo Rocha, Wilson Sergio ; Grilo Rodrigues, Jose Carlos ; Exposito de Queiroz, Alfredo Antonio Alencar ; de Queiroz, Alvaro Antonio Alencar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-802f9bad311f728369660b2ad131e50e24ac34cafffe3cff62f0e5effe8daca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerated aging</topic><topic>Aging</topic><topic>Cables</topic><topic>Correlation analysis</topic><topic>Degradation</topic><topic>Differential scanning calorimetry</topic><topic>Fluorescence</topic><topic>Fluorescent indicators</topic><topic>High density polyethylenes</topic><topic>Insulation</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Monitoring</topic><topic>Nanocomposites</topic><topic>Nanocrystals</topic><topic>nanostructured materials</topic><topic>optical sensors</topic><topic>polyethylene</topic><topic>Polymers</topic><topic>Powders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Araujo Rocha, Wilson Sergio</creatorcontrib><creatorcontrib>Grilo Rodrigues, Jose Carlos</creatorcontrib><creatorcontrib>Exposito de Queiroz, Alfredo Antonio Alencar</creatorcontrib><creatorcontrib>de Queiroz, Alvaro Antonio Alencar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>de Araujo Rocha, Wilson Sergio</au><au>Grilo Rodrigues, Jose Carlos</au><au>Exposito de Queiroz, Alfredo Antonio Alencar</au><au>de Queiroz, Alvaro Antonio Alencar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curcumin Nanocrystals as Photodynamical Sensor Monitoring Ultraviolet Accelerated Aging of HDPE</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>20</volume><issue>1</issue><spage>155</spage><epage>161</epage><pages>155-161</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this work, curcumin nanocrystals (CCN) was used as fluorescence probes for monitoring the accelerated aging of high density polyethylene (HDPE) used in insulation of high-voltage cables. CCN has been synthesized and incorporated into HDPE matrix using hydrothermal process (HydP) at 202.65 kPa and temperatures of 60 °C and 120 °C. The apparent activation energy (E A ) for CCN incorporation into HDPE matrix was 54.4 kJ/mol. The resulting nanocomposite HDPE-CCN has been characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and fluorescence spectroscopy (FS). The crystallinity of HDPE and HDPE-CCN determined by DSC were 71.27% and 70.30% respectively, suggesting that the presence of CCN does not modify significantly the microstructure of HDPE. Accelerated aging of HDPE-CCN samples was carried out and the stress to break (ε b ), Young's modulus (E) and fluorescence intensity (FI) were used as measurements of HDPE degradation. Mechanical properties (ε b , E) and FI measurements do correlate with age-related material degradation on the HDPE samples examined.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2940982</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1769-7022</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2020-01, Vol.20 (1), p.155-161
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2019_2940982
source IEEE Electronic Library (IEL)
subjects Accelerated aging
Aging
Cables
Correlation analysis
Degradation
Differential scanning calorimetry
Fluorescence
Fluorescent indicators
High density polyethylenes
Insulation
Mechanical properties
Modulus of elasticity
Monitoring
Nanocomposites
Nanocrystals
nanostructured materials
optical sensors
polyethylene
Polymers
Powders
title Curcumin Nanocrystals as Photodynamical Sensor Monitoring Ultraviolet Accelerated Aging of HDPE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curcumin%20Nanocrystals%20as%20Photodynamical%20Sensor%20Monitoring%20Ultraviolet%20Accelerated%20Aging%20of%20HDPE&rft.jtitle=IEEE%20sensors%20journal&rft.au=de%20Araujo%20Rocha,%20Wilson%20Sergio&rft.date=2020-01-01&rft.volume=20&rft.issue=1&rft.spage=155&rft.epage=161&rft.pages=155-161&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2940982&rft_dat=%3Cproquest_RIE%3E2333540083%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2333540083&rft_id=info:pmid/&rft_ieee_id=8835903&rfr_iscdi=true