Feature-Based Hand Gesture Recognition Using an FMCW Radar and its Temporal Feature Analysis

In this paper, feature-based gesture recognition in a frequency modulated continuous wave (FMCW) radar system is introduced. We obtain a range-Doppler map (RDM) from raw signals of FMCW radar and generate a variety of features from the RDM. The features are broadly defined to reflect radar-specific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2018-09, Vol.18 (18), p.7593-7602
Hauptverfasser: Ryu, Si-Jung, Suh, Jun-Seuk, Baek, Seung-Hwan, Hong, Songcheol, Kim, Jong-Hwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7602
container_issue 18
container_start_page 7593
container_title IEEE sensors journal
container_volume 18
creator Ryu, Si-Jung
Suh, Jun-Seuk
Baek, Seung-Hwan
Hong, Songcheol
Kim, Jong-Hwan
description In this paper, feature-based gesture recognition in a frequency modulated continuous wave (FMCW) radar system is introduced. We obtain a range-Doppler map (RDM) from raw signals of FMCW radar and generate a variety of features from the RDM. The features are broadly defined to reflect radar-specific characteristics as well as statistical values commonly used in machine learning. Among these radar features, those that are highly correlated with gesture recognition are selected by the proposed feature selection algorithm, which is a wrapper-based feature selection algorithm incorporated with a quantum-inspired evolutionary algorithm (QEA). Furthermore, the information factor based on the minimum redundancy maximum relevance criterion is applied to QEA in order to find feature subsets effectively. The proposed algorithm is able to extract from all feature sets feature subsets related to gesture recognition, and improves the gesture recognition accuracy of the FMCW radar system. In addition, we analyze which features of the radar are helpful for gesture recognition and perform effective gesture recognition using the features determined through feature analysis.
doi_str_mv 10.1109/JSEN.2018.2859815
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2018_2859815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8419726</ieee_id><sourcerecordid>2117149310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d24bf1775841d47ba7523cdc8a3c6dfa382552d219f835a1eec7325a345ed9723</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwEPG_NJJsme6ylf5SqUFv0IITpJltS2t2abA_99u7S4mmG4b03jx8h98B6ACx7ev0cvfc4A93jWmYa5AXpgJQ6AZXqy3YXLEmF-r4mNzFuGINMSdUhP2OH9SG45Bmjs3SKpaUTF9sTnbu8Wpe-9lVJl9GXa4olHb8Nv-gcLQbaan0d6cLt9lXALT1n0UGJ22P08ZZcFbiN7u48u2Q5Hi2G02T2MXkZDmZJzjNRJ5anqwKUkjoFm6oVKslFbnONIu_bAoXmUnLLISu0kAjO5UpwiSKVzmaKiy55POXuQ_V7aNqbTXUITYloOICCNBPAGhWcVHmoYgyuMPvgdxiOBphpIZoWomkhmjPExvNw8njn3L--6dm87Ys_5dBsoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117149310</pqid></control><display><type>article</type><title>Feature-Based Hand Gesture Recognition Using an FMCW Radar and its Temporal Feature Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Ryu, Si-Jung ; Suh, Jun-Seuk ; Baek, Seung-Hwan ; Hong, Songcheol ; Kim, Jong-Hwan</creator><creatorcontrib>Ryu, Si-Jung ; Suh, Jun-Seuk ; Baek, Seung-Hwan ; Hong, Songcheol ; Kim, Jong-Hwan</creatorcontrib><description>In this paper, feature-based gesture recognition in a frequency modulated continuous wave (FMCW) radar system is introduced. We obtain a range-Doppler map (RDM) from raw signals of FMCW radar and generate a variety of features from the RDM. The features are broadly defined to reflect radar-specific characteristics as well as statistical values commonly used in machine learning. Among these radar features, those that are highly correlated with gesture recognition are selected by the proposed feature selection algorithm, which is a wrapper-based feature selection algorithm incorporated with a quantum-inspired evolutionary algorithm (QEA). Furthermore, the information factor based on the minimum redundancy maximum relevance criterion is applied to QEA in order to find feature subsets effectively. The proposed algorithm is able to extract from all feature sets feature subsets related to gesture recognition, and improves the gesture recognition accuracy of the FMCW radar system. In addition, we analyze which features of the radar are helpful for gesture recognition and perform effective gesture recognition using the features determined through feature analysis.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2018.2859815</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Continuous radiation ; evolutionary algorithm ; Evolutionary algorithms ; feature analysis ; Feature extraction ; Feature recognition ; feature selection ; FMCW radar ; Gesture recognition ; Machine learning ; Radar ; Radar antennas ; Radar systems ; Redundancy ; Sensors ; Two dimensional displays</subject><ispartof>IEEE sensors journal, 2018-09, Vol.18 (18), p.7593-7602</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d24bf1775841d47ba7523cdc8a3c6dfa382552d219f835a1eec7325a345ed9723</citedby><cites>FETCH-LOGICAL-c293t-d24bf1775841d47ba7523cdc8a3c6dfa382552d219f835a1eec7325a345ed9723</cites><orcidid>0000-0002-5167-7244 ; 0000-0002-4172-4174</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8419726$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8419726$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ryu, Si-Jung</creatorcontrib><creatorcontrib>Suh, Jun-Seuk</creatorcontrib><creatorcontrib>Baek, Seung-Hwan</creatorcontrib><creatorcontrib>Hong, Songcheol</creatorcontrib><creatorcontrib>Kim, Jong-Hwan</creatorcontrib><title>Feature-Based Hand Gesture Recognition Using an FMCW Radar and its Temporal Feature Analysis</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this paper, feature-based gesture recognition in a frequency modulated continuous wave (FMCW) radar system is introduced. We obtain a range-Doppler map (RDM) from raw signals of FMCW radar and generate a variety of features from the RDM. The features are broadly defined to reflect radar-specific characteristics as well as statistical values commonly used in machine learning. Among these radar features, those that are highly correlated with gesture recognition are selected by the proposed feature selection algorithm, which is a wrapper-based feature selection algorithm incorporated with a quantum-inspired evolutionary algorithm (QEA). Furthermore, the information factor based on the minimum redundancy maximum relevance criterion is applied to QEA in order to find feature subsets effectively. The proposed algorithm is able to extract from all feature sets feature subsets related to gesture recognition, and improves the gesture recognition accuracy of the FMCW radar system. In addition, we analyze which features of the radar are helpful for gesture recognition and perform effective gesture recognition using the features determined through feature analysis.</description><subject>Algorithms</subject><subject>Continuous radiation</subject><subject>evolutionary algorithm</subject><subject>Evolutionary algorithms</subject><subject>feature analysis</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>feature selection</subject><subject>FMCW radar</subject><subject>Gesture recognition</subject><subject>Machine learning</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>Radar systems</subject><subject>Redundancy</subject><subject>Sensors</subject><subject>Two dimensional displays</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKsfQLwEPG_NJJsme6ylf5SqUFv0IITpJltS2t2abA_99u7S4mmG4b03jx8h98B6ACx7ev0cvfc4A93jWmYa5AXpgJQ6AZXqy3YXLEmF-r4mNzFuGINMSdUhP2OH9SG45Bmjs3SKpaUTF9sTnbu8Wpe-9lVJl9GXa4olHb8Nv-gcLQbaan0d6cLt9lXALT1n0UGJ22P08ZZcFbiN7u48u2Q5Hi2G02T2MXkZDmZJzjNRJ5anqwKUkjoFm6oVKslFbnONIu_bAoXmUnLLISu0kAjO5UpwiSKVzmaKiy55POXuQ_V7aNqbTXUITYloOICCNBPAGhWcVHmoYgyuMPvgdxiOBphpIZoWomkhmjPExvNw8njn3L--6dm87Ys_5dBsoQ</recordid><startdate>20180915</startdate><enddate>20180915</enddate><creator>Ryu, Si-Jung</creator><creator>Suh, Jun-Seuk</creator><creator>Baek, Seung-Hwan</creator><creator>Hong, Songcheol</creator><creator>Kim, Jong-Hwan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5167-7244</orcidid><orcidid>https://orcid.org/0000-0002-4172-4174</orcidid></search><sort><creationdate>20180915</creationdate><title>Feature-Based Hand Gesture Recognition Using an FMCW Radar and its Temporal Feature Analysis</title><author>Ryu, Si-Jung ; Suh, Jun-Seuk ; Baek, Seung-Hwan ; Hong, Songcheol ; Kim, Jong-Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d24bf1775841d47ba7523cdc8a3c6dfa382552d219f835a1eec7325a345ed9723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Continuous radiation</topic><topic>evolutionary algorithm</topic><topic>Evolutionary algorithms</topic><topic>feature analysis</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>feature selection</topic><topic>FMCW radar</topic><topic>Gesture recognition</topic><topic>Machine learning</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>Radar systems</topic><topic>Redundancy</topic><topic>Sensors</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryu, Si-Jung</creatorcontrib><creatorcontrib>Suh, Jun-Seuk</creatorcontrib><creatorcontrib>Baek, Seung-Hwan</creatorcontrib><creatorcontrib>Hong, Songcheol</creatorcontrib><creatorcontrib>Kim, Jong-Hwan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ryu, Si-Jung</au><au>Suh, Jun-Seuk</au><au>Baek, Seung-Hwan</au><au>Hong, Songcheol</au><au>Kim, Jong-Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature-Based Hand Gesture Recognition Using an FMCW Radar and its Temporal Feature Analysis</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2018-09-15</date><risdate>2018</risdate><volume>18</volume><issue>18</issue><spage>7593</spage><epage>7602</epage><pages>7593-7602</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this paper, feature-based gesture recognition in a frequency modulated continuous wave (FMCW) radar system is introduced. We obtain a range-Doppler map (RDM) from raw signals of FMCW radar and generate a variety of features from the RDM. The features are broadly defined to reflect radar-specific characteristics as well as statistical values commonly used in machine learning. Among these radar features, those that are highly correlated with gesture recognition are selected by the proposed feature selection algorithm, which is a wrapper-based feature selection algorithm incorporated with a quantum-inspired evolutionary algorithm (QEA). Furthermore, the information factor based on the minimum redundancy maximum relevance criterion is applied to QEA in order to find feature subsets effectively. The proposed algorithm is able to extract from all feature sets feature subsets related to gesture recognition, and improves the gesture recognition accuracy of the FMCW radar system. In addition, we analyze which features of the radar are helpful for gesture recognition and perform effective gesture recognition using the features determined through feature analysis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2018.2859815</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5167-7244</orcidid><orcidid>https://orcid.org/0000-0002-4172-4174</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2018-09, Vol.18 (18), p.7593-7602
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2018_2859815
source IEEE Electronic Library (IEL)
subjects Algorithms
Continuous radiation
evolutionary algorithm
Evolutionary algorithms
feature analysis
Feature extraction
Feature recognition
feature selection
FMCW radar
Gesture recognition
Machine learning
Radar
Radar antennas
Radar systems
Redundancy
Sensors
Two dimensional displays
title Feature-Based Hand Gesture Recognition Using an FMCW Radar and its Temporal Feature Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature-Based%20Hand%20Gesture%20Recognition%20Using%20an%20FMCW%20Radar%20and%20its%20Temporal%20Feature%20Analysis&rft.jtitle=IEEE%20sensors%20journal&rft.au=Ryu,%20Si-Jung&rft.date=2018-09-15&rft.volume=18&rft.issue=18&rft.spage=7593&rft.epage=7602&rft.pages=7593-7602&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2018.2859815&rft_dat=%3Cproquest_RIE%3E2117149310%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117149310&rft_id=info:pmid/&rft_ieee_id=8419726&rfr_iscdi=true