Feature-Based Hand Gesture Recognition Using an FMCW Radar and its Temporal Feature Analysis
In this paper, feature-based gesture recognition in a frequency modulated continuous wave (FMCW) radar system is introduced. We obtain a range-Doppler map (RDM) from raw signals of FMCW radar and generate a variety of features from the RDM. The features are broadly defined to reflect radar-specific...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2018-09, Vol.18 (18), p.7593-7602 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7602 |
---|---|
container_issue | 18 |
container_start_page | 7593 |
container_title | IEEE sensors journal |
container_volume | 18 |
creator | Ryu, Si-Jung Suh, Jun-Seuk Baek, Seung-Hwan Hong, Songcheol Kim, Jong-Hwan |
description | In this paper, feature-based gesture recognition in a frequency modulated continuous wave (FMCW) radar system is introduced. We obtain a range-Doppler map (RDM) from raw signals of FMCW radar and generate a variety of features from the RDM. The features are broadly defined to reflect radar-specific characteristics as well as statistical values commonly used in machine learning. Among these radar features, those that are highly correlated with gesture recognition are selected by the proposed feature selection algorithm, which is a wrapper-based feature selection algorithm incorporated with a quantum-inspired evolutionary algorithm (QEA). Furthermore, the information factor based on the minimum redundancy maximum relevance criterion is applied to QEA in order to find feature subsets effectively. The proposed algorithm is able to extract from all feature sets feature subsets related to gesture recognition, and improves the gesture recognition accuracy of the FMCW radar system. In addition, we analyze which features of the radar are helpful for gesture recognition and perform effective gesture recognition using the features determined through feature analysis. |
doi_str_mv | 10.1109/JSEN.2018.2859815 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2018_2859815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8419726</ieee_id><sourcerecordid>2117149310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d24bf1775841d47ba7523cdc8a3c6dfa382552d219f835a1eec7325a345ed9723</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwEPG_NJJsme6ylf5SqUFv0IITpJltS2t2abA_99u7S4mmG4b03jx8h98B6ACx7ev0cvfc4A93jWmYa5AXpgJQ6AZXqy3YXLEmF-r4mNzFuGINMSdUhP2OH9SG45Bmjs3SKpaUTF9sTnbu8Wpe-9lVJl9GXa4olHb8Nv-gcLQbaan0d6cLt9lXALT1n0UGJ22P08ZZcFbiN7u48u2Q5Hi2G02T2MXkZDmZJzjNRJ5anqwKUkjoFm6oVKslFbnONIu_bAoXmUnLLISu0kAjO5UpwiSKVzmaKiy55POXuQ_V7aNqbTXUITYloOICCNBPAGhWcVHmoYgyuMPvgdxiOBphpIZoWomkhmjPExvNw8njn3L--6dm87Ys_5dBsoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117149310</pqid></control><display><type>article</type><title>Feature-Based Hand Gesture Recognition Using an FMCW Radar and its Temporal Feature Analysis</title><source>IEEE Electronic Library (IEL)</source><creator>Ryu, Si-Jung ; Suh, Jun-Seuk ; Baek, Seung-Hwan ; Hong, Songcheol ; Kim, Jong-Hwan</creator><creatorcontrib>Ryu, Si-Jung ; Suh, Jun-Seuk ; Baek, Seung-Hwan ; Hong, Songcheol ; Kim, Jong-Hwan</creatorcontrib><description>In this paper, feature-based gesture recognition in a frequency modulated continuous wave (FMCW) radar system is introduced. We obtain a range-Doppler map (RDM) from raw signals of FMCW radar and generate a variety of features from the RDM. The features are broadly defined to reflect radar-specific characteristics as well as statistical values commonly used in machine learning. Among these radar features, those that are highly correlated with gesture recognition are selected by the proposed feature selection algorithm, which is a wrapper-based feature selection algorithm incorporated with a quantum-inspired evolutionary algorithm (QEA). Furthermore, the information factor based on the minimum redundancy maximum relevance criterion is applied to QEA in order to find feature subsets effectively. The proposed algorithm is able to extract from all feature sets feature subsets related to gesture recognition, and improves the gesture recognition accuracy of the FMCW radar system. In addition, we analyze which features of the radar are helpful for gesture recognition and perform effective gesture recognition using the features determined through feature analysis.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2018.2859815</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Continuous radiation ; evolutionary algorithm ; Evolutionary algorithms ; feature analysis ; Feature extraction ; Feature recognition ; feature selection ; FMCW radar ; Gesture recognition ; Machine learning ; Radar ; Radar antennas ; Radar systems ; Redundancy ; Sensors ; Two dimensional displays</subject><ispartof>IEEE sensors journal, 2018-09, Vol.18 (18), p.7593-7602</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d24bf1775841d47ba7523cdc8a3c6dfa382552d219f835a1eec7325a345ed9723</citedby><cites>FETCH-LOGICAL-c293t-d24bf1775841d47ba7523cdc8a3c6dfa382552d219f835a1eec7325a345ed9723</cites><orcidid>0000-0002-5167-7244 ; 0000-0002-4172-4174</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8419726$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8419726$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ryu, Si-Jung</creatorcontrib><creatorcontrib>Suh, Jun-Seuk</creatorcontrib><creatorcontrib>Baek, Seung-Hwan</creatorcontrib><creatorcontrib>Hong, Songcheol</creatorcontrib><creatorcontrib>Kim, Jong-Hwan</creatorcontrib><title>Feature-Based Hand Gesture Recognition Using an FMCW Radar and its Temporal Feature Analysis</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In this paper, feature-based gesture recognition in a frequency modulated continuous wave (FMCW) radar system is introduced. We obtain a range-Doppler map (RDM) from raw signals of FMCW radar and generate a variety of features from the RDM. The features are broadly defined to reflect radar-specific characteristics as well as statistical values commonly used in machine learning. Among these radar features, those that are highly correlated with gesture recognition are selected by the proposed feature selection algorithm, which is a wrapper-based feature selection algorithm incorporated with a quantum-inspired evolutionary algorithm (QEA). Furthermore, the information factor based on the minimum redundancy maximum relevance criterion is applied to QEA in order to find feature subsets effectively. The proposed algorithm is able to extract from all feature sets feature subsets related to gesture recognition, and improves the gesture recognition accuracy of the FMCW radar system. In addition, we analyze which features of the radar are helpful for gesture recognition and perform effective gesture recognition using the features determined through feature analysis.</description><subject>Algorithms</subject><subject>Continuous radiation</subject><subject>evolutionary algorithm</subject><subject>Evolutionary algorithms</subject><subject>feature analysis</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>feature selection</subject><subject>FMCW radar</subject><subject>Gesture recognition</subject><subject>Machine learning</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>Radar systems</subject><subject>Redundancy</subject><subject>Sensors</subject><subject>Two dimensional displays</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKsfQLwEPG_NJJsme6ylf5SqUFv0IITpJltS2t2abA_99u7S4mmG4b03jx8h98B6ACx7ev0cvfc4A93jWmYa5AXpgJQ6AZXqy3YXLEmF-r4mNzFuGINMSdUhP2OH9SG45Bmjs3SKpaUTF9sTnbu8Wpe-9lVJl9GXa4olHb8Nv-gcLQbaan0d6cLt9lXALT1n0UGJ22P08ZZcFbiN7u48u2Q5Hi2G02T2MXkZDmZJzjNRJ5anqwKUkjoFm6oVKslFbnONIu_bAoXmUnLLISu0kAjO5UpwiSKVzmaKiy55POXuQ_V7aNqbTXUITYloOICCNBPAGhWcVHmoYgyuMPvgdxiOBphpIZoWomkhmjPExvNw8njn3L--6dm87Ys_5dBsoQ</recordid><startdate>20180915</startdate><enddate>20180915</enddate><creator>Ryu, Si-Jung</creator><creator>Suh, Jun-Seuk</creator><creator>Baek, Seung-Hwan</creator><creator>Hong, Songcheol</creator><creator>Kim, Jong-Hwan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5167-7244</orcidid><orcidid>https://orcid.org/0000-0002-4172-4174</orcidid></search><sort><creationdate>20180915</creationdate><title>Feature-Based Hand Gesture Recognition Using an FMCW Radar and its Temporal Feature Analysis</title><author>Ryu, Si-Jung ; Suh, Jun-Seuk ; Baek, Seung-Hwan ; Hong, Songcheol ; Kim, Jong-Hwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d24bf1775841d47ba7523cdc8a3c6dfa382552d219f835a1eec7325a345ed9723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Continuous radiation</topic><topic>evolutionary algorithm</topic><topic>Evolutionary algorithms</topic><topic>feature analysis</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>feature selection</topic><topic>FMCW radar</topic><topic>Gesture recognition</topic><topic>Machine learning</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>Radar systems</topic><topic>Redundancy</topic><topic>Sensors</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryu, Si-Jung</creatorcontrib><creatorcontrib>Suh, Jun-Seuk</creatorcontrib><creatorcontrib>Baek, Seung-Hwan</creatorcontrib><creatorcontrib>Hong, Songcheol</creatorcontrib><creatorcontrib>Kim, Jong-Hwan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ryu, Si-Jung</au><au>Suh, Jun-Seuk</au><au>Baek, Seung-Hwan</au><au>Hong, Songcheol</au><au>Kim, Jong-Hwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature-Based Hand Gesture Recognition Using an FMCW Radar and its Temporal Feature Analysis</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2018-09-15</date><risdate>2018</risdate><volume>18</volume><issue>18</issue><spage>7593</spage><epage>7602</epage><pages>7593-7602</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In this paper, feature-based gesture recognition in a frequency modulated continuous wave (FMCW) radar system is introduced. We obtain a range-Doppler map (RDM) from raw signals of FMCW radar and generate a variety of features from the RDM. The features are broadly defined to reflect radar-specific characteristics as well as statistical values commonly used in machine learning. Among these radar features, those that are highly correlated with gesture recognition are selected by the proposed feature selection algorithm, which is a wrapper-based feature selection algorithm incorporated with a quantum-inspired evolutionary algorithm (QEA). Furthermore, the information factor based on the minimum redundancy maximum relevance criterion is applied to QEA in order to find feature subsets effectively. The proposed algorithm is able to extract from all feature sets feature subsets related to gesture recognition, and improves the gesture recognition accuracy of the FMCW radar system. In addition, we analyze which features of the radar are helpful for gesture recognition and perform effective gesture recognition using the features determined through feature analysis.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2018.2859815</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5167-7244</orcidid><orcidid>https://orcid.org/0000-0002-4172-4174</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2018-09, Vol.18 (18), p.7593-7602 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2018_2859815 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Continuous radiation evolutionary algorithm Evolutionary algorithms feature analysis Feature extraction Feature recognition feature selection FMCW radar Gesture recognition Machine learning Radar Radar antennas Radar systems Redundancy Sensors Two dimensional displays |
title | Feature-Based Hand Gesture Recognition Using an FMCW Radar and its Temporal Feature Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature-Based%20Hand%20Gesture%20Recognition%20Using%20an%20FMCW%20Radar%20and%20its%20Temporal%20Feature%20Analysis&rft.jtitle=IEEE%20sensors%20journal&rft.au=Ryu,%20Si-Jung&rft.date=2018-09-15&rft.volume=18&rft.issue=18&rft.spage=7593&rft.epage=7602&rft.pages=7593-7602&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2018.2859815&rft_dat=%3Cproquest_RIE%3E2117149310%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117149310&rft_id=info:pmid/&rft_ieee_id=8419726&rfr_iscdi=true |