A Fast Linear Algorithm for Magnetic Dipole Localization Using Total Magnetic Field Gradient
Localization of magnetic target can be estimated through a magnetic anomaly. Generally, we need to solve the high-order nonlinear equations for estimating the position and magnetic moment of the target. Therefore, optimization algorithms are applied to calculate the solution of the nonlinear equatio...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2018-02, Vol.18 (3), p.1032-1038 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1038 |
---|---|
container_issue | 3 |
container_start_page | 1032 |
container_title | IEEE sensors journal |
container_volume | 18 |
creator | Fan, Liming Kang, Xiyuan Zheng, Quan Zhang, Xiaojun Liu, Xuejun Chen, Chenlei Kang, Chong |
description | Localization of magnetic target can be estimated through a magnetic anomaly. Generally, we need to solve the high-order nonlinear equations for estimating the position and magnetic moment of the target. Therefore, optimization algorithms are applied to calculate the solution of the nonlinear equations. In this paper, we present a fast linear algorithm for locating the target based on the total magnetic field gradient. In the algorithm, we give the closed-form formula of the static magnetic target localization. According to the properties of the vector, we can obtain a cubic equation of any 1-D position of the target. Thus, we can easily solve the cubic equation and obtain the closed-form formula of the target localization. Compared with the optimization algorithms, the proposed method provides good performance using short time and can be used to locate the target in real time. The proposed method is validated by the numerical simulation and real experimental data. The position and magnetic moment of the target are calculated rapidly. And the results show that the estimated parameters of the static target using the proposed method are very close to the true values. |
doi_str_mv | 10.1109/JSEN.2017.2781300 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2017_2781300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8170255</ieee_id><sourcerecordid>1986478243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-298853e5a5ded56cc5308190c5f9677a30aeb048b3ddb2f7ea45a24bdc5a5edc3</originalsourceid><addsrcrecordid>eNpFkMFOAyEURYnRxFr9AOOGxPVUGKAwy6a2VTPqwjZxYUIYYCrNdKhAF_r1zqSNrt5bnHvfywHgGqMRxqi4e3qbvYxyhPko5wIThE7AADMmMsypOO13gjJK-Ps5uIhxgxAuOOMD8DGBcxUTLF1rVYCTZu2DS59bWPsAn9W6tclpeO92vrGw9Fo17kcl51u4iq5dw6VPqvkH5842Bi6CMs626RKc1aqJ9uo4h2A1ny2nD1n5unicTspME4pTlhdCMGKZYsYaNta6-1XgAmlWF2POFUHKVoiKihhT5TW3ijKV08roLmKNJkNwe-jdBf-1tzHJjd-HtjspcSHGlIucko7CB0oHH2OwtdwFt1XhW2Ike4mylyh7ifIoscvcHDLOWvvHC8xRzhj5BYsCbcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986478243</pqid></control><display><type>article</type><title>A Fast Linear Algorithm for Magnetic Dipole Localization Using Total Magnetic Field Gradient</title><source>IEEE Electronic Library (IEL)</source><creator>Fan, Liming ; Kang, Xiyuan ; Zheng, Quan ; Zhang, Xiaojun ; Liu, Xuejun ; Chen, Chenlei ; Kang, Chong</creator><creatorcontrib>Fan, Liming ; Kang, Xiyuan ; Zheng, Quan ; Zhang, Xiaojun ; Liu, Xuejun ; Chen, Chenlei ; Kang, Chong</creatorcontrib><description>Localization of magnetic target can be estimated through a magnetic anomaly. Generally, we need to solve the high-order nonlinear equations for estimating the position and magnetic moment of the target. Therefore, optimization algorithms are applied to calculate the solution of the nonlinear equations. In this paper, we present a fast linear algorithm for locating the target based on the total magnetic field gradient. In the algorithm, we give the closed-form formula of the static magnetic target localization. According to the properties of the vector, we can obtain a cubic equation of any 1-D position of the target. Thus, we can easily solve the cubic equation and obtain the closed-form formula of the target localization. Compared with the optimization algorithms, the proposed method provides good performance using short time and can be used to locate the target in real time. The proposed method is validated by the numerical simulation and real experimental data. The position and magnetic moment of the target are calculated rapidly. And the results show that the estimated parameters of the static target using the proposed method are very close to the true values.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2017.2781300</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Closed form solutions ; Computer simulation ; Exact solutions ; Formulas (mathematics) ; inverse problem ; linear algorithm ; Localization ; Magnetic anomalies ; Magnetic dipoles ; Magnetic field measurement ; Magnetic fields ; Magnetic moments ; Magnetic properties ; Magnetic sensors ; magnetic target ; Magnetism ; Magnetometers ; Mathematical model ; Nonlinear equations ; Optimization ; Parameter estimation ; Superconducting magnets ; Total field gradient</subject><ispartof>IEEE sensors journal, 2018-02, Vol.18 (3), p.1032-1038</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-298853e5a5ded56cc5308190c5f9677a30aeb048b3ddb2f7ea45a24bdc5a5edc3</citedby><cites>FETCH-LOGICAL-c341t-298853e5a5ded56cc5308190c5f9677a30aeb048b3ddb2f7ea45a24bdc5a5edc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8170255$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8170255$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fan, Liming</creatorcontrib><creatorcontrib>Kang, Xiyuan</creatorcontrib><creatorcontrib>Zheng, Quan</creatorcontrib><creatorcontrib>Zhang, Xiaojun</creatorcontrib><creatorcontrib>Liu, Xuejun</creatorcontrib><creatorcontrib>Chen, Chenlei</creatorcontrib><creatorcontrib>Kang, Chong</creatorcontrib><title>A Fast Linear Algorithm for Magnetic Dipole Localization Using Total Magnetic Field Gradient</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Localization of magnetic target can be estimated through a magnetic anomaly. Generally, we need to solve the high-order nonlinear equations for estimating the position and magnetic moment of the target. Therefore, optimization algorithms are applied to calculate the solution of the nonlinear equations. In this paper, we present a fast linear algorithm for locating the target based on the total magnetic field gradient. In the algorithm, we give the closed-form formula of the static magnetic target localization. According to the properties of the vector, we can obtain a cubic equation of any 1-D position of the target. Thus, we can easily solve the cubic equation and obtain the closed-form formula of the target localization. Compared with the optimization algorithms, the proposed method provides good performance using short time and can be used to locate the target in real time. The proposed method is validated by the numerical simulation and real experimental data. The position and magnetic moment of the target are calculated rapidly. And the results show that the estimated parameters of the static target using the proposed method are very close to the true values.</description><subject>Algorithms</subject><subject>Closed form solutions</subject><subject>Computer simulation</subject><subject>Exact solutions</subject><subject>Formulas (mathematics)</subject><subject>inverse problem</subject><subject>linear algorithm</subject><subject>Localization</subject><subject>Magnetic anomalies</subject><subject>Magnetic dipoles</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Magnetic moments</subject><subject>Magnetic properties</subject><subject>Magnetic sensors</subject><subject>magnetic target</subject><subject>Magnetism</subject><subject>Magnetometers</subject><subject>Mathematical model</subject><subject>Nonlinear equations</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Superconducting magnets</subject><subject>Total field gradient</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkMFOAyEURYnRxFr9AOOGxPVUGKAwy6a2VTPqwjZxYUIYYCrNdKhAF_r1zqSNrt5bnHvfywHgGqMRxqi4e3qbvYxyhPko5wIThE7AADMmMsypOO13gjJK-Ps5uIhxgxAuOOMD8DGBcxUTLF1rVYCTZu2DS59bWPsAn9W6tclpeO92vrGw9Fo17kcl51u4iq5dw6VPqvkH5842Bi6CMs626RKc1aqJ9uo4h2A1ny2nD1n5unicTspME4pTlhdCMGKZYsYaNta6-1XgAmlWF2POFUHKVoiKihhT5TW3ijKV08roLmKNJkNwe-jdBf-1tzHJjd-HtjspcSHGlIucko7CB0oHH2OwtdwFt1XhW2Ike4mylyh7ifIoscvcHDLOWvvHC8xRzhj5BYsCbcQ</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Fan, Liming</creator><creator>Kang, Xiyuan</creator><creator>Zheng, Quan</creator><creator>Zhang, Xiaojun</creator><creator>Liu, Xuejun</creator><creator>Chen, Chenlei</creator><creator>Kang, Chong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20180201</creationdate><title>A Fast Linear Algorithm for Magnetic Dipole Localization Using Total Magnetic Field Gradient</title><author>Fan, Liming ; Kang, Xiyuan ; Zheng, Quan ; Zhang, Xiaojun ; Liu, Xuejun ; Chen, Chenlei ; Kang, Chong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-298853e5a5ded56cc5308190c5f9677a30aeb048b3ddb2f7ea45a24bdc5a5edc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Closed form solutions</topic><topic>Computer simulation</topic><topic>Exact solutions</topic><topic>Formulas (mathematics)</topic><topic>inverse problem</topic><topic>linear algorithm</topic><topic>Localization</topic><topic>Magnetic anomalies</topic><topic>Magnetic dipoles</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Magnetic moments</topic><topic>Magnetic properties</topic><topic>Magnetic sensors</topic><topic>magnetic target</topic><topic>Magnetism</topic><topic>Magnetometers</topic><topic>Mathematical model</topic><topic>Nonlinear equations</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Superconducting magnets</topic><topic>Total field gradient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Liming</creatorcontrib><creatorcontrib>Kang, Xiyuan</creatorcontrib><creatorcontrib>Zheng, Quan</creatorcontrib><creatorcontrib>Zhang, Xiaojun</creatorcontrib><creatorcontrib>Liu, Xuejun</creatorcontrib><creatorcontrib>Chen, Chenlei</creatorcontrib><creatorcontrib>Kang, Chong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fan, Liming</au><au>Kang, Xiyuan</au><au>Zheng, Quan</au><au>Zhang, Xiaojun</au><au>Liu, Xuejun</au><au>Chen, Chenlei</au><au>Kang, Chong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fast Linear Algorithm for Magnetic Dipole Localization Using Total Magnetic Field Gradient</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>18</volume><issue>3</issue><spage>1032</spage><epage>1038</epage><pages>1032-1038</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Localization of magnetic target can be estimated through a magnetic anomaly. Generally, we need to solve the high-order nonlinear equations for estimating the position and magnetic moment of the target. Therefore, optimization algorithms are applied to calculate the solution of the nonlinear equations. In this paper, we present a fast linear algorithm for locating the target based on the total magnetic field gradient. In the algorithm, we give the closed-form formula of the static magnetic target localization. According to the properties of the vector, we can obtain a cubic equation of any 1-D position of the target. Thus, we can easily solve the cubic equation and obtain the closed-form formula of the target localization. Compared with the optimization algorithms, the proposed method provides good performance using short time and can be used to locate the target in real time. The proposed method is validated by the numerical simulation and real experimental data. The position and magnetic moment of the target are calculated rapidly. And the results show that the estimated parameters of the static target using the proposed method are very close to the true values.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2017.2781300</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2018-02, Vol.18 (3), p.1032-1038 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2017_2781300 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Closed form solutions Computer simulation Exact solutions Formulas (mathematics) inverse problem linear algorithm Localization Magnetic anomalies Magnetic dipoles Magnetic field measurement Magnetic fields Magnetic moments Magnetic properties Magnetic sensors magnetic target Magnetism Magnetometers Mathematical model Nonlinear equations Optimization Parameter estimation Superconducting magnets Total field gradient |
title | A Fast Linear Algorithm for Magnetic Dipole Localization Using Total Magnetic Field Gradient |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fast%20Linear%20Algorithm%20for%20Magnetic%20Dipole%20Localization%20Using%20Total%20Magnetic%20Field%20Gradient&rft.jtitle=IEEE%20sensors%20journal&rft.au=Fan,%20Liming&rft.date=2018-02-01&rft.volume=18&rft.issue=3&rft.spage=1032&rft.epage=1038&rft.pages=1032-1038&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2017.2781300&rft_dat=%3Cproquest_RIE%3E1986478243%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986478243&rft_id=info:pmid/&rft_ieee_id=8170255&rfr_iscdi=true |