A Fast Linear Algorithm for Magnetic Dipole Localization Using Total Magnetic Field Gradient

Localization of magnetic target can be estimated through a magnetic anomaly. Generally, we need to solve the high-order nonlinear equations for estimating the position and magnetic moment of the target. Therefore, optimization algorithms are applied to calculate the solution of the nonlinear equatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2018-02, Vol.18 (3), p.1032-1038
Hauptverfasser: Fan, Liming, Kang, Xiyuan, Zheng, Quan, Zhang, Xiaojun, Liu, Xuejun, Chen, Chenlei, Kang, Chong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1038
container_issue 3
container_start_page 1032
container_title IEEE sensors journal
container_volume 18
creator Fan, Liming
Kang, Xiyuan
Zheng, Quan
Zhang, Xiaojun
Liu, Xuejun
Chen, Chenlei
Kang, Chong
description Localization of magnetic target can be estimated through a magnetic anomaly. Generally, we need to solve the high-order nonlinear equations for estimating the position and magnetic moment of the target. Therefore, optimization algorithms are applied to calculate the solution of the nonlinear equations. In this paper, we present a fast linear algorithm for locating the target based on the total magnetic field gradient. In the algorithm, we give the closed-form formula of the static magnetic target localization. According to the properties of the vector, we can obtain a cubic equation of any 1-D position of the target. Thus, we can easily solve the cubic equation and obtain the closed-form formula of the target localization. Compared with the optimization algorithms, the proposed method provides good performance using short time and can be used to locate the target in real time. The proposed method is validated by the numerical simulation and real experimental data. The position and magnetic moment of the target are calculated rapidly. And the results show that the estimated parameters of the static target using the proposed method are very close to the true values.
doi_str_mv 10.1109/JSEN.2017.2781300
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2017_2781300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8170255</ieee_id><sourcerecordid>1986478243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-298853e5a5ded56cc5308190c5f9677a30aeb048b3ddb2f7ea45a24bdc5a5edc3</originalsourceid><addsrcrecordid>eNpFkMFOAyEURYnRxFr9AOOGxPVUGKAwy6a2VTPqwjZxYUIYYCrNdKhAF_r1zqSNrt5bnHvfywHgGqMRxqi4e3qbvYxyhPko5wIThE7AADMmMsypOO13gjJK-Ps5uIhxgxAuOOMD8DGBcxUTLF1rVYCTZu2DS59bWPsAn9W6tclpeO92vrGw9Fo17kcl51u4iq5dw6VPqvkH5842Bi6CMs626RKc1aqJ9uo4h2A1ny2nD1n5unicTspME4pTlhdCMGKZYsYaNta6-1XgAmlWF2POFUHKVoiKihhT5TW3ijKV08roLmKNJkNwe-jdBf-1tzHJjd-HtjspcSHGlIucko7CB0oHH2OwtdwFt1XhW2Ike4mylyh7ifIoscvcHDLOWvvHC8xRzhj5BYsCbcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986478243</pqid></control><display><type>article</type><title>A Fast Linear Algorithm for Magnetic Dipole Localization Using Total Magnetic Field Gradient</title><source>IEEE Electronic Library (IEL)</source><creator>Fan, Liming ; Kang, Xiyuan ; Zheng, Quan ; Zhang, Xiaojun ; Liu, Xuejun ; Chen, Chenlei ; Kang, Chong</creator><creatorcontrib>Fan, Liming ; Kang, Xiyuan ; Zheng, Quan ; Zhang, Xiaojun ; Liu, Xuejun ; Chen, Chenlei ; Kang, Chong</creatorcontrib><description>Localization of magnetic target can be estimated through a magnetic anomaly. Generally, we need to solve the high-order nonlinear equations for estimating the position and magnetic moment of the target. Therefore, optimization algorithms are applied to calculate the solution of the nonlinear equations. In this paper, we present a fast linear algorithm for locating the target based on the total magnetic field gradient. In the algorithm, we give the closed-form formula of the static magnetic target localization. According to the properties of the vector, we can obtain a cubic equation of any 1-D position of the target. Thus, we can easily solve the cubic equation and obtain the closed-form formula of the target localization. Compared with the optimization algorithms, the proposed method provides good performance using short time and can be used to locate the target in real time. The proposed method is validated by the numerical simulation and real experimental data. The position and magnetic moment of the target are calculated rapidly. And the results show that the estimated parameters of the static target using the proposed method are very close to the true values.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2017.2781300</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Closed form solutions ; Computer simulation ; Exact solutions ; Formulas (mathematics) ; inverse problem ; linear algorithm ; Localization ; Magnetic anomalies ; Magnetic dipoles ; Magnetic field measurement ; Magnetic fields ; Magnetic moments ; Magnetic properties ; Magnetic sensors ; magnetic target ; Magnetism ; Magnetometers ; Mathematical model ; Nonlinear equations ; Optimization ; Parameter estimation ; Superconducting magnets ; Total field gradient</subject><ispartof>IEEE sensors journal, 2018-02, Vol.18 (3), p.1032-1038</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-298853e5a5ded56cc5308190c5f9677a30aeb048b3ddb2f7ea45a24bdc5a5edc3</citedby><cites>FETCH-LOGICAL-c341t-298853e5a5ded56cc5308190c5f9677a30aeb048b3ddb2f7ea45a24bdc5a5edc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8170255$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8170255$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fan, Liming</creatorcontrib><creatorcontrib>Kang, Xiyuan</creatorcontrib><creatorcontrib>Zheng, Quan</creatorcontrib><creatorcontrib>Zhang, Xiaojun</creatorcontrib><creatorcontrib>Liu, Xuejun</creatorcontrib><creatorcontrib>Chen, Chenlei</creatorcontrib><creatorcontrib>Kang, Chong</creatorcontrib><title>A Fast Linear Algorithm for Magnetic Dipole Localization Using Total Magnetic Field Gradient</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Localization of magnetic target can be estimated through a magnetic anomaly. Generally, we need to solve the high-order nonlinear equations for estimating the position and magnetic moment of the target. Therefore, optimization algorithms are applied to calculate the solution of the nonlinear equations. In this paper, we present a fast linear algorithm for locating the target based on the total magnetic field gradient. In the algorithm, we give the closed-form formula of the static magnetic target localization. According to the properties of the vector, we can obtain a cubic equation of any 1-D position of the target. Thus, we can easily solve the cubic equation and obtain the closed-form formula of the target localization. Compared with the optimization algorithms, the proposed method provides good performance using short time and can be used to locate the target in real time. The proposed method is validated by the numerical simulation and real experimental data. The position and magnetic moment of the target are calculated rapidly. And the results show that the estimated parameters of the static target using the proposed method are very close to the true values.</description><subject>Algorithms</subject><subject>Closed form solutions</subject><subject>Computer simulation</subject><subject>Exact solutions</subject><subject>Formulas (mathematics)</subject><subject>inverse problem</subject><subject>linear algorithm</subject><subject>Localization</subject><subject>Magnetic anomalies</subject><subject>Magnetic dipoles</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Magnetic moments</subject><subject>Magnetic properties</subject><subject>Magnetic sensors</subject><subject>magnetic target</subject><subject>Magnetism</subject><subject>Magnetometers</subject><subject>Mathematical model</subject><subject>Nonlinear equations</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Superconducting magnets</subject><subject>Total field gradient</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkMFOAyEURYnRxFr9AOOGxPVUGKAwy6a2VTPqwjZxYUIYYCrNdKhAF_r1zqSNrt5bnHvfywHgGqMRxqi4e3qbvYxyhPko5wIThE7AADMmMsypOO13gjJK-Ps5uIhxgxAuOOMD8DGBcxUTLF1rVYCTZu2DS59bWPsAn9W6tclpeO92vrGw9Fo17kcl51u4iq5dw6VPqvkH5842Bi6CMs626RKc1aqJ9uo4h2A1ny2nD1n5unicTspME4pTlhdCMGKZYsYaNta6-1XgAmlWF2POFUHKVoiKihhT5TW3ijKV08roLmKNJkNwe-jdBf-1tzHJjd-HtjspcSHGlIucko7CB0oHH2OwtdwFt1XhW2Ike4mylyh7ifIoscvcHDLOWvvHC8xRzhj5BYsCbcQ</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Fan, Liming</creator><creator>Kang, Xiyuan</creator><creator>Zheng, Quan</creator><creator>Zhang, Xiaojun</creator><creator>Liu, Xuejun</creator><creator>Chen, Chenlei</creator><creator>Kang, Chong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20180201</creationdate><title>A Fast Linear Algorithm for Magnetic Dipole Localization Using Total Magnetic Field Gradient</title><author>Fan, Liming ; Kang, Xiyuan ; Zheng, Quan ; Zhang, Xiaojun ; Liu, Xuejun ; Chen, Chenlei ; Kang, Chong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-298853e5a5ded56cc5308190c5f9677a30aeb048b3ddb2f7ea45a24bdc5a5edc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Closed form solutions</topic><topic>Computer simulation</topic><topic>Exact solutions</topic><topic>Formulas (mathematics)</topic><topic>inverse problem</topic><topic>linear algorithm</topic><topic>Localization</topic><topic>Magnetic anomalies</topic><topic>Magnetic dipoles</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Magnetic moments</topic><topic>Magnetic properties</topic><topic>Magnetic sensors</topic><topic>magnetic target</topic><topic>Magnetism</topic><topic>Magnetometers</topic><topic>Mathematical model</topic><topic>Nonlinear equations</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Superconducting magnets</topic><topic>Total field gradient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Liming</creatorcontrib><creatorcontrib>Kang, Xiyuan</creatorcontrib><creatorcontrib>Zheng, Quan</creatorcontrib><creatorcontrib>Zhang, Xiaojun</creatorcontrib><creatorcontrib>Liu, Xuejun</creatorcontrib><creatorcontrib>Chen, Chenlei</creatorcontrib><creatorcontrib>Kang, Chong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fan, Liming</au><au>Kang, Xiyuan</au><au>Zheng, Quan</au><au>Zhang, Xiaojun</au><au>Liu, Xuejun</au><au>Chen, Chenlei</au><au>Kang, Chong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Fast Linear Algorithm for Magnetic Dipole Localization Using Total Magnetic Field Gradient</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>18</volume><issue>3</issue><spage>1032</spage><epage>1038</epage><pages>1032-1038</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Localization of magnetic target can be estimated through a magnetic anomaly. Generally, we need to solve the high-order nonlinear equations for estimating the position and magnetic moment of the target. Therefore, optimization algorithms are applied to calculate the solution of the nonlinear equations. In this paper, we present a fast linear algorithm for locating the target based on the total magnetic field gradient. In the algorithm, we give the closed-form formula of the static magnetic target localization. According to the properties of the vector, we can obtain a cubic equation of any 1-D position of the target. Thus, we can easily solve the cubic equation and obtain the closed-form formula of the target localization. Compared with the optimization algorithms, the proposed method provides good performance using short time and can be used to locate the target in real time. The proposed method is validated by the numerical simulation and real experimental data. The position and magnetic moment of the target are calculated rapidly. And the results show that the estimated parameters of the static target using the proposed method are very close to the true values.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2017.2781300</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2018-02, Vol.18 (3), p.1032-1038
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2017_2781300
source IEEE Electronic Library (IEL)
subjects Algorithms
Closed form solutions
Computer simulation
Exact solutions
Formulas (mathematics)
inverse problem
linear algorithm
Localization
Magnetic anomalies
Magnetic dipoles
Magnetic field measurement
Magnetic fields
Magnetic moments
Magnetic properties
Magnetic sensors
magnetic target
Magnetism
Magnetometers
Mathematical model
Nonlinear equations
Optimization
Parameter estimation
Superconducting magnets
Total field gradient
title A Fast Linear Algorithm for Magnetic Dipole Localization Using Total Magnetic Field Gradient
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Fast%20Linear%20Algorithm%20for%20Magnetic%20Dipole%20Localization%20Using%20Total%20Magnetic%20Field%20Gradient&rft.jtitle=IEEE%20sensors%20journal&rft.au=Fan,%20Liming&rft.date=2018-02-01&rft.volume=18&rft.issue=3&rft.spage=1032&rft.epage=1038&rft.pages=1032-1038&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2017.2781300&rft_dat=%3Cproquest_RIE%3E1986478243%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1986478243&rft_id=info:pmid/&rft_ieee_id=8170255&rfr_iscdi=true