Source Estimation Using Coprime Array: A Sparse Reconstruction Perspective

Direction-of-arrival (DOA), power, and achievable degrees-of-freedom (DOFs) are fundamental parameters for source estimation. In this paper, we propose a novel sparse reconstruction-based source estimation algorithm by using a coprime array. Specifically, a difference coarray is derived from a copri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2017-02, Vol.17 (3), p.755-765
Hauptverfasser: Zhiguo Shi, Chengwei Zhou, Yujie Gu, Goodman, Nathan A., Fengzhong Qu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Direction-of-arrival (DOA), power, and achievable degrees-of-freedom (DOFs) are fundamental parameters for source estimation. In this paper, we propose a novel sparse reconstruction-based source estimation algorithm by using a coprime array. Specifically, a difference coarray is derived from a coprime array as the foundation for increasing the number of DOFs, and a virtual uniform linear subarray covariance matrix sparse reconstruction-based optimization problem is formulated for DOA estimation. Meanwhile, a modified sliding window scheme is devised to remove the spurious peaks from the reconstructed sparse spatial spectrum, and the power estimation is enhanced through a least squares problem. Simulation results demonstrate the effectiveness of the proposed algorithm in terms of DOA estimation and power estimation as well as the achievable DOFs.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2016.2637059