Measurement of Gas Thermal Properties Using the Parametric Reduced-Order Modeling Approach
This paper deals with a thermal gas property micro-sensor. The proposed modeling approach of the sensor was based on reduced order modeling, in contrast to the traditional analytical modelling approach, which is the standard for this kind of sensors. This sensor was deployed for the measurement of t...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2016-06, Vol.16 (12), p.4704-4714 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4714 |
---|---|
container_issue | 12 |
container_start_page | 4704 |
container_title | IEEE sensors journal |
container_volume | 16 |
creator | Badarlis, Anastasios Stingelin, Simon Pfau, Axel Kalfas, Anestis |
description | This paper deals with a thermal gas property micro-sensor. The proposed modeling approach of the sensor was based on reduced order modeling, in contrast to the traditional analytical modelling approach, which is the standard for this kind of sensors. This sensor was deployed for the measurement of the thermal conductivity (k) and the volumetric heat capacity (ρc p ) of gases and works according to the temperature oscillation technique. A proper model is crucial for the measurement accuracy. The scope of this paper was to investigate the applicability of a sensor model based on a reduced-order modeling approach, intending to improve the performance of this sensor, as the behavior of the sensor can be modeled much more accurately than using an analytical model. For this reason, a parametric model-order reduction technique using proper orthogonal decomposition was applied. The main advantage of the reduced-order model is the high accuracy in the modeling of the conductive heat transfer problem, while it requires low computation effort. The approach was tested experimentally, where the model was calibrated in two pure gases and evaluated in 21 gases and gas mixtures. The sensor achieved an accuracy in the thermal conductivity of 6.5% and in the volumetric heat capacity of 3.2%. |
doi_str_mv | 10.1109/JSEN.2016.2558820 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2016_2558820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7460158</ieee_id><sourcerecordid>1816067896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-6e702def72bd050b6aa10d7dbb594cf80f027a686f63fe41d23aa85dd981f4a3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhiMEEqXwAxCLJRaWlHM-bGesqlJALa2gSIjFcuIzTZUv7GTg35OoFQPT3fC8750ez7umMKEUkvvnt_nLJADKJkEcCxHAiTei_eZTHonTYQ_Bj0L-ce5dOLcHoAmP-cj7XKFyncUSq5bUhiyUI9sd2lIVZGPrBm2boyPvLq--SLtDslFWldjaPCOvqLsMtb-2Gi1Z1RqLgZo2ja1Vtrv0zowqHF4d59jbPsy3s0d_uV48zaZLPwsD1voMOQQaDQ9SDTGkTCkKmus0jZMoMwIMBFwxwQwLDUZUB6FSItY6EdREKhx7d4fa_up3h66VZe4yLApVYd05SQVlwLhIWI_e_kP3dWer_jlJeQKcxgKinqIHKrO1cxaNbGxeKvsjKchBthxky0G2PMruMzeHTI6IfzyPGPSd4S8JInsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790715804</pqid></control><display><type>article</type><title>Measurement of Gas Thermal Properties Using the Parametric Reduced-Order Modeling Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Badarlis, Anastasios ; Stingelin, Simon ; Pfau, Axel ; Kalfas, Anestis</creator><creatorcontrib>Badarlis, Anastasios ; Stingelin, Simon ; Pfau, Axel ; Kalfas, Anestis</creatorcontrib><description>This paper deals with a thermal gas property micro-sensor. The proposed modeling approach of the sensor was based on reduced order modeling, in contrast to the traditional analytical modelling approach, which is the standard for this kind of sensors. This sensor was deployed for the measurement of the thermal conductivity (k) and the volumetric heat capacity (ρc p ) of gases and works according to the temperature oscillation technique. A proper model is crucial for the measurement accuracy. The scope of this paper was to investigate the applicability of a sensor model based on a reduced-order modeling approach, intending to improve the performance of this sensor, as the behavior of the sensor can be modeled much more accurately than using an analytical model. For this reason, a parametric model-order reduction technique using proper orthogonal decomposition was applied. The main advantage of the reduced-order model is the high accuracy in the modeling of the conductive heat transfer problem, while it requires low computation effort. The approach was tested experimentally, where the model was calibrated in two pure gases and evaluated in 21 gases and gas mixtures. The sensor achieved an accuracy in the thermal conductivity of 6.5% and in the volumetric heat capacity of 3.2%.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2016.2558820</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Gas detectors ; Heat capacity ; Heat transfer ; Heating ; Mathematical analysis ; Modelling ; parametric reduced order modelling ; proper orthogonal decomposition ; Sensors ; Specific heat ; Temperature measurement ; Temperature Oscillation Technique ; Temperature sensors ; Thermal conductivity ; Thermal property sensor ; volumetric heat capacity</subject><ispartof>IEEE sensors journal, 2016-06, Vol.16 (12), p.4704-4714</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-6e702def72bd050b6aa10d7dbb594cf80f027a686f63fe41d23aa85dd981f4a3</citedby><cites>FETCH-LOGICAL-c326t-6e702def72bd050b6aa10d7dbb594cf80f027a686f63fe41d23aa85dd981f4a3</cites><orcidid>0000-0002-1607-4165 ; 0000-0002-0025-9392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7460158$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7460158$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Badarlis, Anastasios</creatorcontrib><creatorcontrib>Stingelin, Simon</creatorcontrib><creatorcontrib>Pfau, Axel</creatorcontrib><creatorcontrib>Kalfas, Anestis</creatorcontrib><title>Measurement of Gas Thermal Properties Using the Parametric Reduced-Order Modeling Approach</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This paper deals with a thermal gas property micro-sensor. The proposed modeling approach of the sensor was based on reduced order modeling, in contrast to the traditional analytical modelling approach, which is the standard for this kind of sensors. This sensor was deployed for the measurement of the thermal conductivity (k) and the volumetric heat capacity (ρc p ) of gases and works according to the temperature oscillation technique. A proper model is crucial for the measurement accuracy. The scope of this paper was to investigate the applicability of a sensor model based on a reduced-order modeling approach, intending to improve the performance of this sensor, as the behavior of the sensor can be modeled much more accurately than using an analytical model. For this reason, a parametric model-order reduction technique using proper orthogonal decomposition was applied. The main advantage of the reduced-order model is the high accuracy in the modeling of the conductive heat transfer problem, while it requires low computation effort. The approach was tested experimentally, where the model was calibrated in two pure gases and evaluated in 21 gases and gas mixtures. The sensor achieved an accuracy in the thermal conductivity of 6.5% and in the volumetric heat capacity of 3.2%.</description><subject>Accuracy</subject><subject>Gas detectors</subject><subject>Heat capacity</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Mathematical analysis</subject><subject>Modelling</subject><subject>parametric reduced order modelling</subject><subject>proper orthogonal decomposition</subject><subject>Sensors</subject><subject>Specific heat</subject><subject>Temperature measurement</subject><subject>Temperature Oscillation Technique</subject><subject>Temperature sensors</subject><subject>Thermal conductivity</subject><subject>Thermal property sensor</subject><subject>volumetric heat capacity</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhiMEEqXwAxCLJRaWlHM-bGesqlJALa2gSIjFcuIzTZUv7GTg35OoFQPT3fC8750ez7umMKEUkvvnt_nLJADKJkEcCxHAiTei_eZTHonTYQ_Bj0L-ce5dOLcHoAmP-cj7XKFyncUSq5bUhiyUI9sd2lIVZGPrBm2boyPvLq--SLtDslFWldjaPCOvqLsMtb-2Gi1Z1RqLgZo2ja1Vtrv0zowqHF4d59jbPsy3s0d_uV48zaZLPwsD1voMOQQaDQ9SDTGkTCkKmus0jZMoMwIMBFwxwQwLDUZUB6FSItY6EdREKhx7d4fa_up3h66VZe4yLApVYd05SQVlwLhIWI_e_kP3dWer_jlJeQKcxgKinqIHKrO1cxaNbGxeKvsjKchBthxky0G2PMruMzeHTI6IfzyPGPSd4S8JInsg</recordid><startdate>20160615</startdate><enddate>20160615</enddate><creator>Badarlis, Anastasios</creator><creator>Stingelin, Simon</creator><creator>Pfau, Axel</creator><creator>Kalfas, Anestis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-1607-4165</orcidid><orcidid>https://orcid.org/0000-0002-0025-9392</orcidid></search><sort><creationdate>20160615</creationdate><title>Measurement of Gas Thermal Properties Using the Parametric Reduced-Order Modeling Approach</title><author>Badarlis, Anastasios ; Stingelin, Simon ; Pfau, Axel ; Kalfas, Anestis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-6e702def72bd050b6aa10d7dbb594cf80f027a686f63fe41d23aa85dd981f4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Gas detectors</topic><topic>Heat capacity</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Mathematical analysis</topic><topic>Modelling</topic><topic>parametric reduced order modelling</topic><topic>proper orthogonal decomposition</topic><topic>Sensors</topic><topic>Specific heat</topic><topic>Temperature measurement</topic><topic>Temperature Oscillation Technique</topic><topic>Temperature sensors</topic><topic>Thermal conductivity</topic><topic>Thermal property sensor</topic><topic>volumetric heat capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badarlis, Anastasios</creatorcontrib><creatorcontrib>Stingelin, Simon</creatorcontrib><creatorcontrib>Pfau, Axel</creatorcontrib><creatorcontrib>Kalfas, Anestis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badarlis, Anastasios</au><au>Stingelin, Simon</au><au>Pfau, Axel</au><au>Kalfas, Anestis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of Gas Thermal Properties Using the Parametric Reduced-Order Modeling Approach</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2016-06-15</date><risdate>2016</risdate><volume>16</volume><issue>12</issue><spage>4704</spage><epage>4714</epage><pages>4704-4714</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This paper deals with a thermal gas property micro-sensor. The proposed modeling approach of the sensor was based on reduced order modeling, in contrast to the traditional analytical modelling approach, which is the standard for this kind of sensors. This sensor was deployed for the measurement of the thermal conductivity (k) and the volumetric heat capacity (ρc p ) of gases and works according to the temperature oscillation technique. A proper model is crucial for the measurement accuracy. The scope of this paper was to investigate the applicability of a sensor model based on a reduced-order modeling approach, intending to improve the performance of this sensor, as the behavior of the sensor can be modeled much more accurately than using an analytical model. For this reason, a parametric model-order reduction technique using proper orthogonal decomposition was applied. The main advantage of the reduced-order model is the high accuracy in the modeling of the conductive heat transfer problem, while it requires low computation effort. The approach was tested experimentally, where the model was calibrated in two pure gases and evaluated in 21 gases and gas mixtures. The sensor achieved an accuracy in the thermal conductivity of 6.5% and in the volumetric heat capacity of 3.2%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2016.2558820</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1607-4165</orcidid><orcidid>https://orcid.org/0000-0002-0025-9392</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2016-06, Vol.16 (12), p.4704-4714 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2016_2558820 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Gas detectors Heat capacity Heat transfer Heating Mathematical analysis Modelling parametric reduced order modelling proper orthogonal decomposition Sensors Specific heat Temperature measurement Temperature Oscillation Technique Temperature sensors Thermal conductivity Thermal property sensor volumetric heat capacity |
title | Measurement of Gas Thermal Properties Using the Parametric Reduced-Order Modeling Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20Gas%20Thermal%20Properties%20Using%20the%20Parametric%20Reduced-Order%20Modeling%20Approach&rft.jtitle=IEEE%20sensors%20journal&rft.au=Badarlis,%20Anastasios&rft.date=2016-06-15&rft.volume=16&rft.issue=12&rft.spage=4704&rft.epage=4714&rft.pages=4704-4714&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2016.2558820&rft_dat=%3Cproquest_RIE%3E1816067896%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790715804&rft_id=info:pmid/&rft_ieee_id=7460158&rfr_iscdi=true |