Measurement of Gas Thermal Properties Using the Parametric Reduced-Order Modeling Approach

This paper deals with a thermal gas property micro-sensor. The proposed modeling approach of the sensor was based on reduced order modeling, in contrast to the traditional analytical modelling approach, which is the standard for this kind of sensors. This sensor was deployed for the measurement of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2016-06, Vol.16 (12), p.4704-4714
Hauptverfasser: Badarlis, Anastasios, Stingelin, Simon, Pfau, Axel, Kalfas, Anestis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4714
container_issue 12
container_start_page 4704
container_title IEEE sensors journal
container_volume 16
creator Badarlis, Anastasios
Stingelin, Simon
Pfau, Axel
Kalfas, Anestis
description This paper deals with a thermal gas property micro-sensor. The proposed modeling approach of the sensor was based on reduced order modeling, in contrast to the traditional analytical modelling approach, which is the standard for this kind of sensors. This sensor was deployed for the measurement of the thermal conductivity (k) and the volumetric heat capacity (ρc p ) of gases and works according to the temperature oscillation technique. A proper model is crucial for the measurement accuracy. The scope of this paper was to investigate the applicability of a sensor model based on a reduced-order modeling approach, intending to improve the performance of this sensor, as the behavior of the sensor can be modeled much more accurately than using an analytical model. For this reason, a parametric model-order reduction technique using proper orthogonal decomposition was applied. The main advantage of the reduced-order model is the high accuracy in the modeling of the conductive heat transfer problem, while it requires low computation effort. The approach was tested experimentally, where the model was calibrated in two pure gases and evaluated in 21 gases and gas mixtures. The sensor achieved an accuracy in the thermal conductivity of 6.5% and in the volumetric heat capacity of 3.2%.
doi_str_mv 10.1109/JSEN.2016.2558820
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2016_2558820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7460158</ieee_id><sourcerecordid>1816067896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-6e702def72bd050b6aa10d7dbb594cf80f027a686f63fe41d23aa85dd981f4a3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhiMEEqXwAxCLJRaWlHM-bGesqlJALa2gSIjFcuIzTZUv7GTg35OoFQPT3fC8750ez7umMKEUkvvnt_nLJADKJkEcCxHAiTei_eZTHonTYQ_Bj0L-ce5dOLcHoAmP-cj7XKFyncUSq5bUhiyUI9sd2lIVZGPrBm2boyPvLq--SLtDslFWldjaPCOvqLsMtb-2Gi1Z1RqLgZo2ja1Vtrv0zowqHF4d59jbPsy3s0d_uV48zaZLPwsD1voMOQQaDQ9SDTGkTCkKmus0jZMoMwIMBFwxwQwLDUZUB6FSItY6EdREKhx7d4fa_up3h66VZe4yLApVYd05SQVlwLhIWI_e_kP3dWer_jlJeQKcxgKinqIHKrO1cxaNbGxeKvsjKchBthxky0G2PMruMzeHTI6IfzyPGPSd4S8JInsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790715804</pqid></control><display><type>article</type><title>Measurement of Gas Thermal Properties Using the Parametric Reduced-Order Modeling Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Badarlis, Anastasios ; Stingelin, Simon ; Pfau, Axel ; Kalfas, Anestis</creator><creatorcontrib>Badarlis, Anastasios ; Stingelin, Simon ; Pfau, Axel ; Kalfas, Anestis</creatorcontrib><description>This paper deals with a thermal gas property micro-sensor. The proposed modeling approach of the sensor was based on reduced order modeling, in contrast to the traditional analytical modelling approach, which is the standard for this kind of sensors. This sensor was deployed for the measurement of the thermal conductivity (k) and the volumetric heat capacity (ρc p ) of gases and works according to the temperature oscillation technique. A proper model is crucial for the measurement accuracy. The scope of this paper was to investigate the applicability of a sensor model based on a reduced-order modeling approach, intending to improve the performance of this sensor, as the behavior of the sensor can be modeled much more accurately than using an analytical model. For this reason, a parametric model-order reduction technique using proper orthogonal decomposition was applied. The main advantage of the reduced-order model is the high accuracy in the modeling of the conductive heat transfer problem, while it requires low computation effort. The approach was tested experimentally, where the model was calibrated in two pure gases and evaluated in 21 gases and gas mixtures. The sensor achieved an accuracy in the thermal conductivity of 6.5% and in the volumetric heat capacity of 3.2%.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2016.2558820</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Gas detectors ; Heat capacity ; Heat transfer ; Heating ; Mathematical analysis ; Modelling ; parametric reduced order modelling ; proper orthogonal decomposition ; Sensors ; Specific heat ; Temperature measurement ; Temperature Oscillation Technique ; Temperature sensors ; Thermal conductivity ; Thermal property sensor ; volumetric heat capacity</subject><ispartof>IEEE sensors journal, 2016-06, Vol.16 (12), p.4704-4714</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-6e702def72bd050b6aa10d7dbb594cf80f027a686f63fe41d23aa85dd981f4a3</citedby><cites>FETCH-LOGICAL-c326t-6e702def72bd050b6aa10d7dbb594cf80f027a686f63fe41d23aa85dd981f4a3</cites><orcidid>0000-0002-1607-4165 ; 0000-0002-0025-9392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7460158$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7460158$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Badarlis, Anastasios</creatorcontrib><creatorcontrib>Stingelin, Simon</creatorcontrib><creatorcontrib>Pfau, Axel</creatorcontrib><creatorcontrib>Kalfas, Anestis</creatorcontrib><title>Measurement of Gas Thermal Properties Using the Parametric Reduced-Order Modeling Approach</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>This paper deals with a thermal gas property micro-sensor. The proposed modeling approach of the sensor was based on reduced order modeling, in contrast to the traditional analytical modelling approach, which is the standard for this kind of sensors. This sensor was deployed for the measurement of the thermal conductivity (k) and the volumetric heat capacity (ρc p ) of gases and works according to the temperature oscillation technique. A proper model is crucial for the measurement accuracy. The scope of this paper was to investigate the applicability of a sensor model based on a reduced-order modeling approach, intending to improve the performance of this sensor, as the behavior of the sensor can be modeled much more accurately than using an analytical model. For this reason, a parametric model-order reduction technique using proper orthogonal decomposition was applied. The main advantage of the reduced-order model is the high accuracy in the modeling of the conductive heat transfer problem, while it requires low computation effort. The approach was tested experimentally, where the model was calibrated in two pure gases and evaluated in 21 gases and gas mixtures. The sensor achieved an accuracy in the thermal conductivity of 6.5% and in the volumetric heat capacity of 3.2%.</description><subject>Accuracy</subject><subject>Gas detectors</subject><subject>Heat capacity</subject><subject>Heat transfer</subject><subject>Heating</subject><subject>Mathematical analysis</subject><subject>Modelling</subject><subject>parametric reduced order modelling</subject><subject>proper orthogonal decomposition</subject><subject>Sensors</subject><subject>Specific heat</subject><subject>Temperature measurement</subject><subject>Temperature Oscillation Technique</subject><subject>Temperature sensors</subject><subject>Thermal conductivity</subject><subject>Thermal property sensor</subject><subject>volumetric heat capacity</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhiMEEqXwAxCLJRaWlHM-bGesqlJALa2gSIjFcuIzTZUv7GTg35OoFQPT3fC8750ez7umMKEUkvvnt_nLJADKJkEcCxHAiTei_eZTHonTYQ_Bj0L-ce5dOLcHoAmP-cj7XKFyncUSq5bUhiyUI9sd2lIVZGPrBm2boyPvLq--SLtDslFWldjaPCOvqLsMtb-2Gi1Z1RqLgZo2ja1Vtrv0zowqHF4d59jbPsy3s0d_uV48zaZLPwsD1voMOQQaDQ9SDTGkTCkKmus0jZMoMwIMBFwxwQwLDUZUB6FSItY6EdREKhx7d4fa_up3h66VZe4yLApVYd05SQVlwLhIWI_e_kP3dWer_jlJeQKcxgKinqIHKrO1cxaNbGxeKvsjKchBthxky0G2PMruMzeHTI6IfzyPGPSd4S8JInsg</recordid><startdate>20160615</startdate><enddate>20160615</enddate><creator>Badarlis, Anastasios</creator><creator>Stingelin, Simon</creator><creator>Pfau, Axel</creator><creator>Kalfas, Anestis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-1607-4165</orcidid><orcidid>https://orcid.org/0000-0002-0025-9392</orcidid></search><sort><creationdate>20160615</creationdate><title>Measurement of Gas Thermal Properties Using the Parametric Reduced-Order Modeling Approach</title><author>Badarlis, Anastasios ; Stingelin, Simon ; Pfau, Axel ; Kalfas, Anestis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-6e702def72bd050b6aa10d7dbb594cf80f027a686f63fe41d23aa85dd981f4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Accuracy</topic><topic>Gas detectors</topic><topic>Heat capacity</topic><topic>Heat transfer</topic><topic>Heating</topic><topic>Mathematical analysis</topic><topic>Modelling</topic><topic>parametric reduced order modelling</topic><topic>proper orthogonal decomposition</topic><topic>Sensors</topic><topic>Specific heat</topic><topic>Temperature measurement</topic><topic>Temperature Oscillation Technique</topic><topic>Temperature sensors</topic><topic>Thermal conductivity</topic><topic>Thermal property sensor</topic><topic>volumetric heat capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badarlis, Anastasios</creatorcontrib><creatorcontrib>Stingelin, Simon</creatorcontrib><creatorcontrib>Pfau, Axel</creatorcontrib><creatorcontrib>Kalfas, Anestis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Badarlis, Anastasios</au><au>Stingelin, Simon</au><au>Pfau, Axel</au><au>Kalfas, Anestis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of Gas Thermal Properties Using the Parametric Reduced-Order Modeling Approach</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2016-06-15</date><risdate>2016</risdate><volume>16</volume><issue>12</issue><spage>4704</spage><epage>4714</epage><pages>4704-4714</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>This paper deals with a thermal gas property micro-sensor. The proposed modeling approach of the sensor was based on reduced order modeling, in contrast to the traditional analytical modelling approach, which is the standard for this kind of sensors. This sensor was deployed for the measurement of the thermal conductivity (k) and the volumetric heat capacity (ρc p ) of gases and works according to the temperature oscillation technique. A proper model is crucial for the measurement accuracy. The scope of this paper was to investigate the applicability of a sensor model based on a reduced-order modeling approach, intending to improve the performance of this sensor, as the behavior of the sensor can be modeled much more accurately than using an analytical model. For this reason, a parametric model-order reduction technique using proper orthogonal decomposition was applied. The main advantage of the reduced-order model is the high accuracy in the modeling of the conductive heat transfer problem, while it requires low computation effort. The approach was tested experimentally, where the model was calibrated in two pure gases and evaluated in 21 gases and gas mixtures. The sensor achieved an accuracy in the thermal conductivity of 6.5% and in the volumetric heat capacity of 3.2%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2016.2558820</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1607-4165</orcidid><orcidid>https://orcid.org/0000-0002-0025-9392</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2016-06, Vol.16 (12), p.4704-4714
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2016_2558820
source IEEE Electronic Library (IEL)
subjects Accuracy
Gas detectors
Heat capacity
Heat transfer
Heating
Mathematical analysis
Modelling
parametric reduced order modelling
proper orthogonal decomposition
Sensors
Specific heat
Temperature measurement
Temperature Oscillation Technique
Temperature sensors
Thermal conductivity
Thermal property sensor
volumetric heat capacity
title Measurement of Gas Thermal Properties Using the Parametric Reduced-Order Modeling Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A10%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20Gas%20Thermal%20Properties%20Using%20the%20Parametric%20Reduced-Order%20Modeling%20Approach&rft.jtitle=IEEE%20sensors%20journal&rft.au=Badarlis,%20Anastasios&rft.date=2016-06-15&rft.volume=16&rft.issue=12&rft.spage=4704&rft.epage=4714&rft.pages=4704-4714&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2016.2558820&rft_dat=%3Cproquest_RIE%3E1816067896%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790715804&rft_id=info:pmid/&rft_ieee_id=7460158&rfr_iscdi=true