Depth Resolution Enhancement Technique for CMOS Time-of-Flight 3-D Image Sensors

Introducing Time-of-Flight 3-D image sensors to actual engineering applications, such as pattern recognition, is constrained not only by their limited depth and lateral resolution, but also by how similar the precision of depth measurement throughout the whole pixel-matrix is. In real operating envi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2012-06, Vol.12 (6), p.2320-2327
Hauptverfasser: Hafiane, M. L., Wagner, W., Dibi, Z., Manck, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2327
container_issue 6
container_start_page 2320
container_title IEEE sensors journal
container_volume 12
creator Hafiane, M. L.
Wagner, W.
Dibi, Z.
Manck, O.
description Introducing Time-of-Flight 3-D image sensors to actual engineering applications, such as pattern recognition, is constrained not only by their limited depth and lateral resolution, but also by how similar the precision of depth measurement throughout the whole pixel-matrix is. In real operating environment, an observed 3-D-scene hardly exhibits a homogeneous reflectance factor. Moreover, the light-beam (laser source) presents a nonuniform optical power distribution in space. Thus, the amount of the incident light on the sensor surface varies drastically from one pixel to another, and so does the signal-to-noise ratio. To address this problem, this paper investigates the impact of both scene and light-source non-ideal characteristics on the sensor performance. An adaptive on-pixel analog signal processing technique is also presented and applied to the design of a 32 × 32 complementary metal oxide semiconductor (CMOS) range camera, featuring an interesting cost-efficient solution.
doi_str_mv 10.1109/JSEN.2012.2187350
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2012_2187350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6148248</ieee_id><sourcerecordid>2653386501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-391c709345905a90d4ad1b428df056548433f86794d779e2a1ec00fd51348c5c3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYuntiO7SXqA4oKRbRI7KLgTJpUTVLsdMHfk6gVq5nFuXdGh5Bb4CMAbh9eVtO3UcQhGkVgtFD8jAxAKcNAS3Pe74IzKfTXJbkKYcs5WK30gLxPcN8W9ANDszu0ZVPTaV2ktcMK65au0RV1-XNAmjeejl-XK7ouK2RNzma7clO0VLAJnVfpBukK69D4cE0u8nQX8OY0h-RzNl2Pn9li-TQfPy6YE8q2TFhwmlshleUqtTyTaQbfMjJZzlWspJFC5CbWVmZaW4xSQMd5nikQ0jjlxJDcH3v3vukeDG2ybQ6-7k4mwAGEMZGKOwqOlPNNCB7zZO_LKvW_HZT04pJeXNKLS07iuszdMVMi4j8fgzSRNOIPMIJm9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011388256</pqid></control><display><type>article</type><title>Depth Resolution Enhancement Technique for CMOS Time-of-Flight 3-D Image Sensors</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Hafiane, M. L. ; Wagner, W. ; Dibi, Z. ; Manck, O.</creator><creatorcontrib>Hafiane, M. L. ; Wagner, W. ; Dibi, Z. ; Manck, O.</creatorcontrib><description>Introducing Time-of-Flight 3-D image sensors to actual engineering applications, such as pattern recognition, is constrained not only by their limited depth and lateral resolution, but also by how similar the precision of depth measurement throughout the whole pixel-matrix is. In real operating environment, an observed 3-D-scene hardly exhibits a homogeneous reflectance factor. Moreover, the light-beam (laser source) presents a nonuniform optical power distribution in space. Thus, the amount of the incident light on the sensor surface varies drastically from one pixel to another, and so does the signal-to-noise ratio. To address this problem, this paper investigates the impact of both scene and light-source non-ideal characteristics on the sensor performance. An adaptive on-pixel analog signal processing technique is also presented and applied to the design of a 32 × 32 complementary metal oxide semiconductor (CMOS) range camera, featuring an interesting cost-efficient solution.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2012.2187350</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analog averaging ; beam optical power distribution ; CMOS image sensor ; correlated double sampling ; Laser beams ; Measurement by laser beam ; multiple double short time integration principle ; objects reflectance ; Optical imaging ; Optical reflection ; Optical sensors ; Sensors ; Signal processing ; Signal to noise ratio ; Studies ; time-of-flight</subject><ispartof>IEEE sensors journal, 2012-06, Vol.12 (6), p.2320-2327</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-391c709345905a90d4ad1b428df056548433f86794d779e2a1ec00fd51348c5c3</citedby><cites>FETCH-LOGICAL-c359t-391c709345905a90d4ad1b428df056548433f86794d779e2a1ec00fd51348c5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6148248$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6148248$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hafiane, M. L.</creatorcontrib><creatorcontrib>Wagner, W.</creatorcontrib><creatorcontrib>Dibi, Z.</creatorcontrib><creatorcontrib>Manck, O.</creatorcontrib><title>Depth Resolution Enhancement Technique for CMOS Time-of-Flight 3-D Image Sensors</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Introducing Time-of-Flight 3-D image sensors to actual engineering applications, such as pattern recognition, is constrained not only by their limited depth and lateral resolution, but also by how similar the precision of depth measurement throughout the whole pixel-matrix is. In real operating environment, an observed 3-D-scene hardly exhibits a homogeneous reflectance factor. Moreover, the light-beam (laser source) presents a nonuniform optical power distribution in space. Thus, the amount of the incident light on the sensor surface varies drastically from one pixel to another, and so does the signal-to-noise ratio. To address this problem, this paper investigates the impact of both scene and light-source non-ideal characteristics on the sensor performance. An adaptive on-pixel analog signal processing technique is also presented and applied to the design of a 32 × 32 complementary metal oxide semiconductor (CMOS) range camera, featuring an interesting cost-efficient solution.</description><subject>Analog averaging</subject><subject>beam optical power distribution</subject><subject>CMOS image sensor</subject><subject>correlated double sampling</subject><subject>Laser beams</subject><subject>Measurement by laser beam</subject><subject>multiple double short time integration principle</subject><subject>objects reflectance</subject><subject>Optical imaging</subject><subject>Optical reflection</subject><subject>Optical sensors</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Studies</subject><subject>time-of-flight</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYuntiO7SXqA4oKRbRI7KLgTJpUTVLsdMHfk6gVq5nFuXdGh5Bb4CMAbh9eVtO3UcQhGkVgtFD8jAxAKcNAS3Pe74IzKfTXJbkKYcs5WK30gLxPcN8W9ANDszu0ZVPTaV2ktcMK65au0RV1-XNAmjeejl-XK7ouK2RNzma7clO0VLAJnVfpBukK69D4cE0u8nQX8OY0h-RzNl2Pn9li-TQfPy6YE8q2TFhwmlshleUqtTyTaQbfMjJZzlWspJFC5CbWVmZaW4xSQMd5nikQ0jjlxJDcH3v3vukeDG2ybQ6-7k4mwAGEMZGKOwqOlPNNCB7zZO_LKvW_HZT04pJeXNKLS07iuszdMVMi4j8fgzSRNOIPMIJm9w</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Hafiane, M. L.</creator><creator>Wagner, W.</creator><creator>Dibi, Z.</creator><creator>Manck, O.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120601</creationdate><title>Depth Resolution Enhancement Technique for CMOS Time-of-Flight 3-D Image Sensors</title><author>Hafiane, M. L. ; Wagner, W. ; Dibi, Z. ; Manck, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-391c709345905a90d4ad1b428df056548433f86794d779e2a1ec00fd51348c5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analog averaging</topic><topic>beam optical power distribution</topic><topic>CMOS image sensor</topic><topic>correlated double sampling</topic><topic>Laser beams</topic><topic>Measurement by laser beam</topic><topic>multiple double short time integration principle</topic><topic>objects reflectance</topic><topic>Optical imaging</topic><topic>Optical reflection</topic><topic>Optical sensors</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Studies</topic><topic>time-of-flight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hafiane, M. L.</creatorcontrib><creatorcontrib>Wagner, W.</creatorcontrib><creatorcontrib>Dibi, Z.</creatorcontrib><creatorcontrib>Manck, O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hafiane, M. L.</au><au>Wagner, W.</au><au>Dibi, Z.</au><au>Manck, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depth Resolution Enhancement Technique for CMOS Time-of-Flight 3-D Image Sensors</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>12</volume><issue>6</issue><spage>2320</spage><epage>2327</epage><pages>2320-2327</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Introducing Time-of-Flight 3-D image sensors to actual engineering applications, such as pattern recognition, is constrained not only by their limited depth and lateral resolution, but also by how similar the precision of depth measurement throughout the whole pixel-matrix is. In real operating environment, an observed 3-D-scene hardly exhibits a homogeneous reflectance factor. Moreover, the light-beam (laser source) presents a nonuniform optical power distribution in space. Thus, the amount of the incident light on the sensor surface varies drastically from one pixel to another, and so does the signal-to-noise ratio. To address this problem, this paper investigates the impact of both scene and light-source non-ideal characteristics on the sensor performance. An adaptive on-pixel analog signal processing technique is also presented and applied to the design of a 32 × 32 complementary metal oxide semiconductor (CMOS) range camera, featuring an interesting cost-efficient solution.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2012.2187350</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2012-06, Vol.12 (6), p.2320-2327
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2012_2187350
source IEEE/IET Electronic Library (IEL)
subjects Analog averaging
beam optical power distribution
CMOS image sensor
correlated double sampling
Laser beams
Measurement by laser beam
multiple double short time integration principle
objects reflectance
Optical imaging
Optical reflection
Optical sensors
Sensors
Signal processing
Signal to noise ratio
Studies
time-of-flight
title Depth Resolution Enhancement Technique for CMOS Time-of-Flight 3-D Image Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depth%20Resolution%20Enhancement%20Technique%20for%20CMOS%20Time-of-Flight%203-D%20Image%20Sensors&rft.jtitle=IEEE%20sensors%20journal&rft.au=Hafiane,%20M.%20L.&rft.date=2012-06-01&rft.volume=12&rft.issue=6&rft.spage=2320&rft.epage=2327&rft.pages=2320-2327&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2012.2187350&rft_dat=%3Cproquest_RIE%3E2653386501%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011388256&rft_id=info:pmid/&rft_ieee_id=6148248&rfr_iscdi=true