From Modeling to Implementation of Virtual Sensors in Body Sensor Networks

Body Sensor Networks (BSNs) represent an emerging technology which has received much attention recently due to its enormous potential to enable remote, real-time, continuous and non-invasive monitoring of people in health-care, entertainment, fitness, sport, social interaction. Signal processing for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2012-03, Vol.12 (3), p.583-593
Hauptverfasser: Raveendranathan, N., Galzarano, S., Loseu, V., Gravina, R., Giannantonio, R., Sgroi, M., Jafari, R., Fortino, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 593
container_issue 3
container_start_page 583
container_title IEEE sensors journal
container_volume 12
creator Raveendranathan, N.
Galzarano, S.
Loseu, V.
Gravina, R.
Giannantonio, R.
Sgroi, M.
Jafari, R.
Fortino, G.
description Body Sensor Networks (BSNs) represent an emerging technology which has received much attention recently due to its enormous potential to enable remote, real-time, continuous and non-invasive monitoring of people in health-care, entertainment, fitness, sport, social interaction. Signal processing for BSNs usually comprises of multiple levels of data abstraction, from raw sensor data to data calculated from processing steps such as feature extraction and classification. This paper presents a multi-layer task model based on the concept of Virtual Sensors to improve architecture modularity and design reusability. Virtual Sensors are abstractions of components of BSN systems that include sensor sampling and processing tasks and provide data upon external requests. The Virtual Sensor model implementation relies on SPINE2, an open source domain-specific framework that is designed to support distributed sensing operations and signal processing for wireless sensor networks and enables code reusability, efficiency, and application interoperability. The proposed model is applied in the context of gait analysis through wearable sensors. A gait analysis system is developed according to a SPINE2-based Virtual Sensor architecture and experimentally evaluated. Obtained results confirm that great effectiveness can be achieved in designing and implementing BSN applications through the Virtual Sensor approach while maintaining high efficiency and accuracy.
doi_str_mv 10.1109/JSEN.2011.2121059
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2011_2121059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5721776</ieee_id><sourcerecordid>10_1109_JSEN_2011_2121059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-25d376796ec71ed261d940585ceb2764de5bb384399ce881be31143a9abfcd8c3</originalsourceid><addsrcrecordid>eNo9kEFOwzAURC0EEqVwAMTGF0jxt-PYXkLVQqtSFgXELkrsHxRI4soOQr09RI1YzYw0M4tHyDWwGQAzt-vdYjvjDGDGgQOT5oRMQEqdgEr16eAFS1Kh3s_JRYyfjIFRUk3Iehl8S5-8w6buPmjv6ardN9hi1xd97TvqK_pWh_67aOgOu-hDpHVH7707jJlusf_x4StekrOqaCJejTolr8vFy_wx2Tw_rOZ3m8QKEH3CpRMqUyZDqwAdz8CZlEktLZZcZalDWZZCp8IYi1pDiQIgFYUpyso6bcWUwPHXBh9jwCrfh7otwiEHlg8w8gFGPsDIRxh_m5vjpkbE_75UHJTKxC-Be1uO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>From Modeling to Implementation of Virtual Sensors in Body Sensor Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Raveendranathan, N. ; Galzarano, S. ; Loseu, V. ; Gravina, R. ; Giannantonio, R. ; Sgroi, M. ; Jafari, R. ; Fortino, G.</creator><creatorcontrib>Raveendranathan, N. ; Galzarano, S. ; Loseu, V. ; Gravina, R. ; Giannantonio, R. ; Sgroi, M. ; Jafari, R. ; Fortino, G.</creatorcontrib><description>Body Sensor Networks (BSNs) represent an emerging technology which has received much attention recently due to its enormous potential to enable remote, real-time, continuous and non-invasive monitoring of people in health-care, entertainment, fitness, sport, social interaction. Signal processing for BSNs usually comprises of multiple levels of data abstraction, from raw sensor data to data calculated from processing steps such as feature extraction and classification. This paper presents a multi-layer task model based on the concept of Virtual Sensors to improve architecture modularity and design reusability. Virtual Sensors are abstractions of components of BSN systems that include sensor sampling and processing tasks and provide data upon external requests. The Virtual Sensor model implementation relies on SPINE2, an open source domain-specific framework that is designed to support distributed sensing operations and signal processing for wireless sensor networks and enables code reusability, efficiency, and application interoperability. The proposed model is applied in the context of gait analysis through wearable sensors. A gait analysis system is developed according to a SPINE2-based Virtual Sensor architecture and experimentally evaluated. Obtained results confirm that great effectiveness can be achieved in designing and implementing BSN applications through the Virtual Sensor approach while maintaining high efficiency and accuracy.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2011.2121059</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Body sensor networks ; Computer architecture ; Programming ; Sensor phenomena and characterization ; Sensor systems ; Signal processing ; SPINE ; virtual sensors ; Wireless sensor networks</subject><ispartof>IEEE sensors journal, 2012-03, Vol.12 (3), p.583-593</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-25d376796ec71ed261d940585ceb2764de5bb384399ce881be31143a9abfcd8c3</citedby><cites>FETCH-LOGICAL-c313t-25d376796ec71ed261d940585ceb2764de5bb384399ce881be31143a9abfcd8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5721776$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5721776$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Raveendranathan, N.</creatorcontrib><creatorcontrib>Galzarano, S.</creatorcontrib><creatorcontrib>Loseu, V.</creatorcontrib><creatorcontrib>Gravina, R.</creatorcontrib><creatorcontrib>Giannantonio, R.</creatorcontrib><creatorcontrib>Sgroi, M.</creatorcontrib><creatorcontrib>Jafari, R.</creatorcontrib><creatorcontrib>Fortino, G.</creatorcontrib><title>From Modeling to Implementation of Virtual Sensors in Body Sensor Networks</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Body Sensor Networks (BSNs) represent an emerging technology which has received much attention recently due to its enormous potential to enable remote, real-time, continuous and non-invasive monitoring of people in health-care, entertainment, fitness, sport, social interaction. Signal processing for BSNs usually comprises of multiple levels of data abstraction, from raw sensor data to data calculated from processing steps such as feature extraction and classification. This paper presents a multi-layer task model based on the concept of Virtual Sensors to improve architecture modularity and design reusability. Virtual Sensors are abstractions of components of BSN systems that include sensor sampling and processing tasks and provide data upon external requests. The Virtual Sensor model implementation relies on SPINE2, an open source domain-specific framework that is designed to support distributed sensing operations and signal processing for wireless sensor networks and enables code reusability, efficiency, and application interoperability. The proposed model is applied in the context of gait analysis through wearable sensors. A gait analysis system is developed according to a SPINE2-based Virtual Sensor architecture and experimentally evaluated. Obtained results confirm that great effectiveness can be achieved in designing and implementing BSN applications through the Virtual Sensor approach while maintaining high efficiency and accuracy.</description><subject>Body sensor networks</subject><subject>Computer architecture</subject><subject>Programming</subject><subject>Sensor phenomena and characterization</subject><subject>Sensor systems</subject><subject>Signal processing</subject><subject>SPINE</subject><subject>virtual sensors</subject><subject>Wireless sensor networks</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFOwzAURC0EEqVwAMTGF0jxt-PYXkLVQqtSFgXELkrsHxRI4soOQr09RI1YzYw0M4tHyDWwGQAzt-vdYjvjDGDGgQOT5oRMQEqdgEr16eAFS1Kh3s_JRYyfjIFRUk3Iehl8S5-8w6buPmjv6ardN9hi1xd97TvqK_pWh_67aOgOu-hDpHVH7707jJlusf_x4StekrOqaCJejTolr8vFy_wx2Tw_rOZ3m8QKEH3CpRMqUyZDqwAdz8CZlEktLZZcZalDWZZCp8IYi1pDiQIgFYUpyso6bcWUwPHXBh9jwCrfh7otwiEHlg8w8gFGPsDIRxh_m5vjpkbE_75UHJTKxC-Be1uO</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Raveendranathan, N.</creator><creator>Galzarano, S.</creator><creator>Loseu, V.</creator><creator>Gravina, R.</creator><creator>Giannantonio, R.</creator><creator>Sgroi, M.</creator><creator>Jafari, R.</creator><creator>Fortino, G.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120301</creationdate><title>From Modeling to Implementation of Virtual Sensors in Body Sensor Networks</title><author>Raveendranathan, N. ; Galzarano, S. ; Loseu, V. ; Gravina, R. ; Giannantonio, R. ; Sgroi, M. ; Jafari, R. ; Fortino, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-25d376796ec71ed261d940585ceb2764de5bb384399ce881be31143a9abfcd8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Body sensor networks</topic><topic>Computer architecture</topic><topic>Programming</topic><topic>Sensor phenomena and characterization</topic><topic>Sensor systems</topic><topic>Signal processing</topic><topic>SPINE</topic><topic>virtual sensors</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raveendranathan, N.</creatorcontrib><creatorcontrib>Galzarano, S.</creatorcontrib><creatorcontrib>Loseu, V.</creatorcontrib><creatorcontrib>Gravina, R.</creatorcontrib><creatorcontrib>Giannantonio, R.</creatorcontrib><creatorcontrib>Sgroi, M.</creatorcontrib><creatorcontrib>Jafari, R.</creatorcontrib><creatorcontrib>Fortino, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raveendranathan, N.</au><au>Galzarano, S.</au><au>Loseu, V.</au><au>Gravina, R.</au><au>Giannantonio, R.</au><au>Sgroi, M.</au><au>Jafari, R.</au><au>Fortino, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Modeling to Implementation of Virtual Sensors in Body Sensor Networks</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>12</volume><issue>3</issue><spage>583</spage><epage>593</epage><pages>583-593</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Body Sensor Networks (BSNs) represent an emerging technology which has received much attention recently due to its enormous potential to enable remote, real-time, continuous and non-invasive monitoring of people in health-care, entertainment, fitness, sport, social interaction. Signal processing for BSNs usually comprises of multiple levels of data abstraction, from raw sensor data to data calculated from processing steps such as feature extraction and classification. This paper presents a multi-layer task model based on the concept of Virtual Sensors to improve architecture modularity and design reusability. Virtual Sensors are abstractions of components of BSN systems that include sensor sampling and processing tasks and provide data upon external requests. The Virtual Sensor model implementation relies on SPINE2, an open source domain-specific framework that is designed to support distributed sensing operations and signal processing for wireless sensor networks and enables code reusability, efficiency, and application interoperability. The proposed model is applied in the context of gait analysis through wearable sensors. A gait analysis system is developed according to a SPINE2-based Virtual Sensor architecture and experimentally evaluated. Obtained results confirm that great effectiveness can be achieved in designing and implementing BSN applications through the Virtual Sensor approach while maintaining high efficiency and accuracy.</abstract><pub>IEEE</pub><doi>10.1109/JSEN.2011.2121059</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2012-03, Vol.12 (3), p.583-593
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2011_2121059
source IEEE Electronic Library (IEL)
subjects Body sensor networks
Computer architecture
Programming
Sensor phenomena and characterization
Sensor systems
Signal processing
SPINE
virtual sensors
Wireless sensor networks
title From Modeling to Implementation of Virtual Sensors in Body Sensor Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Modeling%20to%20Implementation%20of%20Virtual%20Sensors%20in%20Body%20Sensor%20Networks&rft.jtitle=IEEE%20sensors%20journal&rft.au=Raveendranathan,%20N.&rft.date=2012-03-01&rft.volume=12&rft.issue=3&rft.spage=583&rft.epage=593&rft.pages=583-593&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2011.2121059&rft_dat=%3Ccrossref_RIE%3E10_1109_JSEN_2011_2121059%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5721776&rfr_iscdi=true