Modeling Chiral Sculptured Thin Films as Platforms for Surface-Plasmonic-Polaritonic Optical Sensing

Biomimetic nanoengineered metamaterials called chiral sculptured thin films (CSTFs) are attractive platforms for optical sensing because their porosity, morphology, and optical properties can be tailored to order. Furthermore, their ability to support more than one surface-plasmon-polariton (SPP) wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2012-02, Vol.12 (2), p.273-280
Hauptverfasser: Mackay, T. G., Lakhtakia, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 280
container_issue 2
container_start_page 273
container_title IEEE sensors journal
container_volume 12
creator Mackay, T. G.
Lakhtakia, A.
description Biomimetic nanoengineered metamaterials called chiral sculptured thin films (CSTFs) are attractive platforms for optical sensing because their porosity, morphology, and optical properties can be tailored to order. Furthermore, their ability to support more than one surface-plasmon-polariton (SPP) wave at a planar interface with a metal offers functionality beyond that associated with conventional SPP-based sensors. An empirical model was constructed to describe SPP-wave propagation guided by the planar interface of a CSTF-infiltrated with a fluid which supposedly contains analytes to be detected-and a metal. The inverse Bruggeman homogenization formalism was first used to determine the nanoscale model parameters of the CSTF. These parameters then served as inputs to the forward Bruggeman homogenization formalism to determine the reference relative permittivity dyadic of the infiltrated CSTF. By solving the corresponding boundary-value problem for a modified Kretschmann configuration, the characteristics of the multiple SPP modes at the planar interface were investigated as functions of the refractive index of the fluid infiltrating the CSTF and the rise angle of the CSTF. The SPP sensitivities thereby revealed bode well for the implementation of fluid-infiltrated CSTFs as SPP-based optical sensors.
doi_str_mv 10.1109/JSEN.2010.2067448
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2010_2067448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5582155</ieee_id><sourcerecordid>2554233631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-69ec59b2f9b97d495bbcccd5b9cd3c874b13ad1e2eaa93484410699d1fb720b63</originalsourceid><addsrcrecordid>eNqFkbtOwzAUhiMEEqXwAIglYmJJsWM7jkdUtVxUaKUWic3yLdSVkxQ7GXh7HLViYGGxz7G-80vHX5JcQzCBELD7l_XsbZKD2OagoBiXJ8kIElJmkOLydKgRyDCiH-fJRQg7ACCjhI4S_dpq42zzmU631guXrlXv9l3vjU43W9ukc-vqkIqQrpzoqtbHJp7puveVUCaLr6FuG6uyVeuEt91Qp8t9Z9UQZpoQsy-Ts0q4YK6O9zh5n88206dssXx8nj4sMoUB7LKCGUWYzCsmGdWYESmVUppIpjRSJcUSIqGhyY0QDOESYwgKxjSsJM2BLNA4uTvk7n371ZvQ8doGZZwTjWn7wGFBYU4IKND_aPzKkhJUDujtH3TX9r6Ji3AGMQIRYhGCB0j5NgRvKr73thb-OybxwRAfDPHBED8aijM3hxlrjPnlo7Q8mkM_FBKM1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914305389</pqid></control><display><type>article</type><title>Modeling Chiral Sculptured Thin Films as Platforms for Surface-Plasmonic-Polaritonic Optical Sensing</title><source>IEEE Electronic Library (IEL)</source><creator>Mackay, T. G. ; Lakhtakia, A.</creator><creatorcontrib>Mackay, T. G. ; Lakhtakia, A.</creatorcontrib><description>Biomimetic nanoengineered metamaterials called chiral sculptured thin films (CSTFs) are attractive platforms for optical sensing because their porosity, morphology, and optical properties can be tailored to order. Furthermore, their ability to support more than one surface-plasmon-polariton (SPP) wave at a planar interface with a metal offers functionality beyond that associated with conventional SPP-based sensors. An empirical model was constructed to describe SPP-wave propagation guided by the planar interface of a CSTF-infiltrated with a fluid which supposedly contains analytes to be detected-and a metal. The inverse Bruggeman homogenization formalism was first used to determine the nanoscale model parameters of the CSTF. These parameters then served as inputs to the forward Bruggeman homogenization formalism to determine the reference relative permittivity dyadic of the infiltrated CSTF. By solving the corresponding boundary-value problem for a modified Kretschmann configuration, the characteristics of the multiple SPP modes at the planar interface were investigated as functions of the refractive index of the fluid infiltrating the CSTF and the rise angle of the CSTF. The SPP sensitivities thereby revealed bode well for the implementation of fluid-infiltrated CSTFs as SPP-based optical sensors.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2010.2067448</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bruggeman homogenization formalism ; chiral sculptured thin film (CSTF) ; Dielectric materials ; Fluid flow ; Formalism ; Homogenizing ; Mathematical models ; Metals ; Metamaterials ; Nanomaterials ; Nanostructure ; Nanowires ; Optical sensors ; Permittivity ; Platforms ; Refractive index ; Studies ; surface plasmon polariton (SPP) ; Thin films</subject><ispartof>IEEE sensors journal, 2012-02, Vol.12 (2), p.273-280</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-69ec59b2f9b97d495bbcccd5b9cd3c874b13ad1e2eaa93484410699d1fb720b63</citedby><cites>FETCH-LOGICAL-c401t-69ec59b2f9b97d495bbcccd5b9cd3c874b13ad1e2eaa93484410699d1fb720b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5582155$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5582155$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mackay, T. G.</creatorcontrib><creatorcontrib>Lakhtakia, A.</creatorcontrib><title>Modeling Chiral Sculptured Thin Films as Platforms for Surface-Plasmonic-Polaritonic Optical Sensing</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Biomimetic nanoengineered metamaterials called chiral sculptured thin films (CSTFs) are attractive platforms for optical sensing because their porosity, morphology, and optical properties can be tailored to order. Furthermore, their ability to support more than one surface-plasmon-polariton (SPP) wave at a planar interface with a metal offers functionality beyond that associated with conventional SPP-based sensors. An empirical model was constructed to describe SPP-wave propagation guided by the planar interface of a CSTF-infiltrated with a fluid which supposedly contains analytes to be detected-and a metal. The inverse Bruggeman homogenization formalism was first used to determine the nanoscale model parameters of the CSTF. These parameters then served as inputs to the forward Bruggeman homogenization formalism to determine the reference relative permittivity dyadic of the infiltrated CSTF. By solving the corresponding boundary-value problem for a modified Kretschmann configuration, the characteristics of the multiple SPP modes at the planar interface were investigated as functions of the refractive index of the fluid infiltrating the CSTF and the rise angle of the CSTF. The SPP sensitivities thereby revealed bode well for the implementation of fluid-infiltrated CSTFs as SPP-based optical sensors.</description><subject>Bruggeman homogenization formalism</subject><subject>chiral sculptured thin film (CSTF)</subject><subject>Dielectric materials</subject><subject>Fluid flow</subject><subject>Formalism</subject><subject>Homogenizing</subject><subject>Mathematical models</subject><subject>Metals</subject><subject>Metamaterials</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Optical sensors</subject><subject>Permittivity</subject><subject>Platforms</subject><subject>Refractive index</subject><subject>Studies</subject><subject>surface plasmon polariton (SPP)</subject><subject>Thin films</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkbtOwzAUhiMEEqXwAIglYmJJsWM7jkdUtVxUaKUWic3yLdSVkxQ7GXh7HLViYGGxz7G-80vHX5JcQzCBELD7l_XsbZKD2OagoBiXJ8kIElJmkOLydKgRyDCiH-fJRQg7ACCjhI4S_dpq42zzmU631guXrlXv9l3vjU43W9ukc-vqkIqQrpzoqtbHJp7puveVUCaLr6FuG6uyVeuEt91Qp8t9Z9UQZpoQsy-Ts0q4YK6O9zh5n88206dssXx8nj4sMoUB7LKCGUWYzCsmGdWYESmVUppIpjRSJcUSIqGhyY0QDOESYwgKxjSsJM2BLNA4uTvk7n371ZvQ8doGZZwTjWn7wGFBYU4IKND_aPzKkhJUDujtH3TX9r6Ji3AGMQIRYhGCB0j5NgRvKr73thb-OybxwRAfDPHBED8aijM3hxlrjPnlo7Q8mkM_FBKM1w</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Mackay, T. G.</creator><creator>Lakhtakia, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120201</creationdate><title>Modeling Chiral Sculptured Thin Films as Platforms for Surface-Plasmonic-Polaritonic Optical Sensing</title><author>Mackay, T. G. ; Lakhtakia, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-69ec59b2f9b97d495bbcccd5b9cd3c874b13ad1e2eaa93484410699d1fb720b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bruggeman homogenization formalism</topic><topic>chiral sculptured thin film (CSTF)</topic><topic>Dielectric materials</topic><topic>Fluid flow</topic><topic>Formalism</topic><topic>Homogenizing</topic><topic>Mathematical models</topic><topic>Metals</topic><topic>Metamaterials</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Optical sensors</topic><topic>Permittivity</topic><topic>Platforms</topic><topic>Refractive index</topic><topic>Studies</topic><topic>surface plasmon polariton (SPP)</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mackay, T. G.</creatorcontrib><creatorcontrib>Lakhtakia, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mackay, T. G.</au><au>Lakhtakia, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Chiral Sculptured Thin Films as Platforms for Surface-Plasmonic-Polaritonic Optical Sensing</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2012-02-01</date><risdate>2012</risdate><volume>12</volume><issue>2</issue><spage>273</spage><epage>280</epage><pages>273-280</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Biomimetic nanoengineered metamaterials called chiral sculptured thin films (CSTFs) are attractive platforms for optical sensing because their porosity, morphology, and optical properties can be tailored to order. Furthermore, their ability to support more than one surface-plasmon-polariton (SPP) wave at a planar interface with a metal offers functionality beyond that associated with conventional SPP-based sensors. An empirical model was constructed to describe SPP-wave propagation guided by the planar interface of a CSTF-infiltrated with a fluid which supposedly contains analytes to be detected-and a metal. The inverse Bruggeman homogenization formalism was first used to determine the nanoscale model parameters of the CSTF. These parameters then served as inputs to the forward Bruggeman homogenization formalism to determine the reference relative permittivity dyadic of the infiltrated CSTF. By solving the corresponding boundary-value problem for a modified Kretschmann configuration, the characteristics of the multiple SPP modes at the planar interface were investigated as functions of the refractive index of the fluid infiltrating the CSTF and the rise angle of the CSTF. The SPP sensitivities thereby revealed bode well for the implementation of fluid-infiltrated CSTFs as SPP-based optical sensors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2010.2067448</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2012-02, Vol.12 (2), p.273-280
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2010_2067448
source IEEE Electronic Library (IEL)
subjects Bruggeman homogenization formalism
chiral sculptured thin film (CSTF)
Dielectric materials
Fluid flow
Formalism
Homogenizing
Mathematical models
Metals
Metamaterials
Nanomaterials
Nanostructure
Nanowires
Optical sensors
Permittivity
Platforms
Refractive index
Studies
surface plasmon polariton (SPP)
Thin films
title Modeling Chiral Sculptured Thin Films as Platforms for Surface-Plasmonic-Polaritonic Optical Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Chiral%20Sculptured%20Thin%20Films%20as%20Platforms%20for%20Surface-Plasmonic-Polaritonic%20Optical%20Sensing&rft.jtitle=IEEE%20sensors%20journal&rft.au=Mackay,%20T.%20G.&rft.date=2012-02-01&rft.volume=12&rft.issue=2&rft.spage=273&rft.epage=280&rft.pages=273-280&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2010.2067448&rft_dat=%3Cproquest_RIE%3E2554233631%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914305389&rft_id=info:pmid/&rft_ieee_id=5582155&rfr_iscdi=true