Estimation of Tire-Road Friction Coefficient Using a Novel Wireless Piezoelectric Tire Sensor
A tire-road friction coefficient estimation approach is proposed which makes use of the uncoupled lateral deflection profile of the tire carcass measured from inside the tire through the entire contact patch. The unique design of the developed wireless piezoelectric sensor enables the decoupling of...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2011-02, Vol.11 (2), p.267-279 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 279 |
---|---|
container_issue | 2 |
container_start_page | 267 |
container_title | IEEE sensors journal |
container_volume | 11 |
creator | Erdogan, G Alexander, L Rajamani, R |
description | A tire-road friction coefficient estimation approach is proposed which makes use of the uncoupled lateral deflection profile of the tire carcass measured from inside the tire through the entire contact patch. The unique design of the developed wireless piezoelectric sensor enables the decoupling of the lateral carcass deformations from the radial and tangential deformations. The estimation of the tire-road friction coefficient depends on the estimation of slip angle, lateral tire force, aligning moment, and the use of a brush model. The tire slip angle is estimated as the slope of the lateral deflection curve at the leading edge of the contact patch. The portion of the deflection profile measured in the contact patch is assumed to be a superposition of three types of lateral carcass deformations, namely, shift, yaw, and bend. The force and moment acting on the tire are obtained by using the coefficients of a parabolic function which approximates the deflection profile inside the contact patch and whose terms represent each type of deformation. The estimated force, moment, and slip angle variables are then plugged into the brush model to estimate the tire-road friction coefficient. A specially constructed tire test rig is used to experimentally evaluate the performance of the developed estimation approach and the tire sensor. Experimental results show that the developed sensor can provide good estimation of both slip angle and tire-road friction coefficient. |
doi_str_mv | 10.1109/JSEN.2010.2053198 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2010_2053198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5579971</ieee_id><sourcerecordid>849485888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-e4fab228f4164a490149dfe319ef3e689507320200980fe9768d9b50cc18ff603</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhhdRsFZ_gHgJePC0dbKbNMlRSusHpYpt0Yss23QiKduNJltBf73ZtnjwlMnwvMPMkyTnFHqUgrp-mA4nvQziNwOeUyUPkg7lXKZUMHnY1jmkLBevx8lJCCsAqgQXneRtGBq7LhvrauIMmVmP6bMrl2Tkrd52Bw6Nsdpi3ZB5sPU7KcnEfWFFXiJcYQjkyeKPi6VuYmg7g0yxDs6fJkemrAKe7d9uMh8NZ4O7dPx4ez-4Gac6V7RJkZlykWXSMNpnJVNAmVoajGegybEvFQeRZ5ABKAkGlejLpVpw0JpKY_qQd5Or3dwP7z43GJpibYPGqiprdJtQSKaY5FLKSF7-I1du4-u4XEFBgsoUMBEpuqO0dyF4NMWHj5b8d4SK1nfR-i5a38Xed8xc7DIWEf94zoVSgua_rg17Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080929047</pqid></control><display><type>article</type><title>Estimation of Tire-Road Friction Coefficient Using a Novel Wireless Piezoelectric Tire Sensor</title><source>IEEE Electronic Library (IEL)</source><creator>Erdogan, G ; Alexander, L ; Rajamani, R</creator><creatorcontrib>Erdogan, G ; Alexander, L ; Rajamani, R</creatorcontrib><description>A tire-road friction coefficient estimation approach is proposed which makes use of the uncoupled lateral deflection profile of the tire carcass measured from inside the tire through the entire contact patch. The unique design of the developed wireless piezoelectric sensor enables the decoupling of the lateral carcass deformations from the radial and tangential deformations. The estimation of the tire-road friction coefficient depends on the estimation of slip angle, lateral tire force, aligning moment, and the use of a brush model. The tire slip angle is estimated as the slope of the lateral deflection curve at the leading edge of the contact patch. The portion of the deflection profile measured in the contact patch is assumed to be a superposition of three types of lateral carcass deformations, namely, shift, yaw, and bend. The force and moment acting on the tire are obtained by using the coefficients of a parabolic function which approximates the deflection profile inside the contact patch and whose terms represent each type of deformation. The estimated force, moment, and slip angle variables are then plugged into the brush model to estimate the tire-road friction coefficient. A specially constructed tire test rig is used to experimentally evaluate the performance of the developed estimation approach and the tire sensor. Experimental results show that the developed sensor can provide good estimation of both slip angle and tire-road friction coefficient.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2010.2053198</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Contact ; Deflection ; Deformation ; Force ; Friction ; Mathematical models ; Observers ; Sensors ; Slip ; Slip angle ; Studies ; tire sensor ; tire-road friction coefficient ; Tires ; Vehicles ; wireless piezoelectric sensor ; wireless tire sensor</subject><ispartof>IEEE sensors journal, 2011-02, Vol.11 (2), p.267-279</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-e4fab228f4164a490149dfe319ef3e689507320200980fe9768d9b50cc18ff603</citedby><cites>FETCH-LOGICAL-c391t-e4fab228f4164a490149dfe319ef3e689507320200980fe9768d9b50cc18ff603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5579971$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5579971$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Erdogan, G</creatorcontrib><creatorcontrib>Alexander, L</creatorcontrib><creatorcontrib>Rajamani, R</creatorcontrib><title>Estimation of Tire-Road Friction Coefficient Using a Novel Wireless Piezoelectric Tire Sensor</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>A tire-road friction coefficient estimation approach is proposed which makes use of the uncoupled lateral deflection profile of the tire carcass measured from inside the tire through the entire contact patch. The unique design of the developed wireless piezoelectric sensor enables the decoupling of the lateral carcass deformations from the radial and tangential deformations. The estimation of the tire-road friction coefficient depends on the estimation of slip angle, lateral tire force, aligning moment, and the use of a brush model. The tire slip angle is estimated as the slope of the lateral deflection curve at the leading edge of the contact patch. The portion of the deflection profile measured in the contact patch is assumed to be a superposition of three types of lateral carcass deformations, namely, shift, yaw, and bend. The force and moment acting on the tire are obtained by using the coefficients of a parabolic function which approximates the deflection profile inside the contact patch and whose terms represent each type of deformation. The estimated force, moment, and slip angle variables are then plugged into the brush model to estimate the tire-road friction coefficient. A specially constructed tire test rig is used to experimentally evaluate the performance of the developed estimation approach and the tire sensor. Experimental results show that the developed sensor can provide good estimation of both slip angle and tire-road friction coefficient.</description><subject>Acceleration</subject><subject>Contact</subject><subject>Deflection</subject><subject>Deformation</subject><subject>Force</subject><subject>Friction</subject><subject>Mathematical models</subject><subject>Observers</subject><subject>Sensors</subject><subject>Slip</subject><subject>Slip angle</subject><subject>Studies</subject><subject>tire sensor</subject><subject>tire-road friction coefficient</subject><subject>Tires</subject><subject>Vehicles</subject><subject>wireless piezoelectric sensor</subject><subject>wireless tire sensor</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhhdRsFZ_gHgJePC0dbKbNMlRSusHpYpt0Yss23QiKduNJltBf73ZtnjwlMnwvMPMkyTnFHqUgrp-mA4nvQziNwOeUyUPkg7lXKZUMHnY1jmkLBevx8lJCCsAqgQXneRtGBq7LhvrauIMmVmP6bMrl2Tkrd52Bw6Nsdpi3ZB5sPU7KcnEfWFFXiJcYQjkyeKPi6VuYmg7g0yxDs6fJkemrAKe7d9uMh8NZ4O7dPx4ez-4Gac6V7RJkZlykWXSMNpnJVNAmVoajGegybEvFQeRZ5ABKAkGlejLpVpw0JpKY_qQd5Or3dwP7z43GJpibYPGqiprdJtQSKaY5FLKSF7-I1du4-u4XEFBgsoUMBEpuqO0dyF4NMWHj5b8d4SK1nfR-i5a38Xed8xc7DIWEf94zoVSgua_rg17Bg</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Erdogan, G</creator><creator>Alexander, L</creator><creator>Rajamani, R</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110201</creationdate><title>Estimation of Tire-Road Friction Coefficient Using a Novel Wireless Piezoelectric Tire Sensor</title><author>Erdogan, G ; Alexander, L ; Rajamani, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-e4fab228f4164a490149dfe319ef3e689507320200980fe9768d9b50cc18ff603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acceleration</topic><topic>Contact</topic><topic>Deflection</topic><topic>Deformation</topic><topic>Force</topic><topic>Friction</topic><topic>Mathematical models</topic><topic>Observers</topic><topic>Sensors</topic><topic>Slip</topic><topic>Slip angle</topic><topic>Studies</topic><topic>tire sensor</topic><topic>tire-road friction coefficient</topic><topic>Tires</topic><topic>Vehicles</topic><topic>wireless piezoelectric sensor</topic><topic>wireless tire sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erdogan, G</creatorcontrib><creatorcontrib>Alexander, L</creatorcontrib><creatorcontrib>Rajamani, R</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Erdogan, G</au><au>Alexander, L</au><au>Rajamani, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Tire-Road Friction Coefficient Using a Novel Wireless Piezoelectric Tire Sensor</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2011-02-01</date><risdate>2011</risdate><volume>11</volume><issue>2</issue><spage>267</spage><epage>279</epage><pages>267-279</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>A tire-road friction coefficient estimation approach is proposed which makes use of the uncoupled lateral deflection profile of the tire carcass measured from inside the tire through the entire contact patch. The unique design of the developed wireless piezoelectric sensor enables the decoupling of the lateral carcass deformations from the radial and tangential deformations. The estimation of the tire-road friction coefficient depends on the estimation of slip angle, lateral tire force, aligning moment, and the use of a brush model. The tire slip angle is estimated as the slope of the lateral deflection curve at the leading edge of the contact patch. The portion of the deflection profile measured in the contact patch is assumed to be a superposition of three types of lateral carcass deformations, namely, shift, yaw, and bend. The force and moment acting on the tire are obtained by using the coefficients of a parabolic function which approximates the deflection profile inside the contact patch and whose terms represent each type of deformation. The estimated force, moment, and slip angle variables are then plugged into the brush model to estimate the tire-road friction coefficient. A specially constructed tire test rig is used to experimentally evaluate the performance of the developed estimation approach and the tire sensor. Experimental results show that the developed sensor can provide good estimation of both slip angle and tire-road friction coefficient.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2010.2053198</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2011-02, Vol.11 (2), p.267-279 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_crossref_primary_10_1109_JSEN_2010_2053198 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Contact Deflection Deformation Force Friction Mathematical models Observers Sensors Slip Slip angle Studies tire sensor tire-road friction coefficient Tires Vehicles wireless piezoelectric sensor wireless tire sensor |
title | Estimation of Tire-Road Friction Coefficient Using a Novel Wireless Piezoelectric Tire Sensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Tire-Road%20Friction%20Coefficient%20Using%20a%20Novel%20Wireless%20Piezoelectric%20Tire%20Sensor&rft.jtitle=IEEE%20sensors%20journal&rft.au=Erdogan,%20G&rft.date=2011-02-01&rft.volume=11&rft.issue=2&rft.spage=267&rft.epage=279&rft.pages=267-279&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2010.2053198&rft_dat=%3Cproquest_RIE%3E849485888%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1080929047&rft_id=info:pmid/&rft_ieee_id=5579971&rfr_iscdi=true |