Estimation of Tire-Road Friction Coefficient Using a Novel Wireless Piezoelectric Tire Sensor

A tire-road friction coefficient estimation approach is proposed which makes use of the uncoupled lateral deflection profile of the tire carcass measured from inside the tire through the entire contact patch. The unique design of the developed wireless piezoelectric sensor enables the decoupling of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2011-02, Vol.11 (2), p.267-279
Hauptverfasser: Erdogan, G, Alexander, L, Rajamani, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 279
container_issue 2
container_start_page 267
container_title IEEE sensors journal
container_volume 11
creator Erdogan, G
Alexander, L
Rajamani, R
description A tire-road friction coefficient estimation approach is proposed which makes use of the uncoupled lateral deflection profile of the tire carcass measured from inside the tire through the entire contact patch. The unique design of the developed wireless piezoelectric sensor enables the decoupling of the lateral carcass deformations from the radial and tangential deformations. The estimation of the tire-road friction coefficient depends on the estimation of slip angle, lateral tire force, aligning moment, and the use of a brush model. The tire slip angle is estimated as the slope of the lateral deflection curve at the leading edge of the contact patch. The portion of the deflection profile measured in the contact patch is assumed to be a superposition of three types of lateral carcass deformations, namely, shift, yaw, and bend. The force and moment acting on the tire are obtained by using the coefficients of a parabolic function which approximates the deflection profile inside the contact patch and whose terms represent each type of deformation. The estimated force, moment, and slip angle variables are then plugged into the brush model to estimate the tire-road friction coefficient. A specially constructed tire test rig is used to experimentally evaluate the performance of the developed estimation approach and the tire sensor. Experimental results show that the developed sensor can provide good estimation of both slip angle and tire-road friction coefficient.
doi_str_mv 10.1109/JSEN.2010.2053198
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_JSEN_2010_2053198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5579971</ieee_id><sourcerecordid>849485888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-e4fab228f4164a490149dfe319ef3e689507320200980fe9768d9b50cc18ff603</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhhdRsFZ_gHgJePC0dbKbNMlRSusHpYpt0Yss23QiKduNJltBf73ZtnjwlMnwvMPMkyTnFHqUgrp-mA4nvQziNwOeUyUPkg7lXKZUMHnY1jmkLBevx8lJCCsAqgQXneRtGBq7LhvrauIMmVmP6bMrl2Tkrd52Bw6Nsdpi3ZB5sPU7KcnEfWFFXiJcYQjkyeKPi6VuYmg7g0yxDs6fJkemrAKe7d9uMh8NZ4O7dPx4ez-4Gac6V7RJkZlykWXSMNpnJVNAmVoajGegybEvFQeRZ5ABKAkGlejLpVpw0JpKY_qQd5Or3dwP7z43GJpibYPGqiprdJtQSKaY5FLKSF7-I1du4-u4XEFBgsoUMBEpuqO0dyF4NMWHj5b8d4SK1nfR-i5a38Xed8xc7DIWEf94zoVSgua_rg17Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080929047</pqid></control><display><type>article</type><title>Estimation of Tire-Road Friction Coefficient Using a Novel Wireless Piezoelectric Tire Sensor</title><source>IEEE Electronic Library (IEL)</source><creator>Erdogan, G ; Alexander, L ; Rajamani, R</creator><creatorcontrib>Erdogan, G ; Alexander, L ; Rajamani, R</creatorcontrib><description>A tire-road friction coefficient estimation approach is proposed which makes use of the uncoupled lateral deflection profile of the tire carcass measured from inside the tire through the entire contact patch. The unique design of the developed wireless piezoelectric sensor enables the decoupling of the lateral carcass deformations from the radial and tangential deformations. The estimation of the tire-road friction coefficient depends on the estimation of slip angle, lateral tire force, aligning moment, and the use of a brush model. The tire slip angle is estimated as the slope of the lateral deflection curve at the leading edge of the contact patch. The portion of the deflection profile measured in the contact patch is assumed to be a superposition of three types of lateral carcass deformations, namely, shift, yaw, and bend. The force and moment acting on the tire are obtained by using the coefficients of a parabolic function which approximates the deflection profile inside the contact patch and whose terms represent each type of deformation. The estimated force, moment, and slip angle variables are then plugged into the brush model to estimate the tire-road friction coefficient. A specially constructed tire test rig is used to experimentally evaluate the performance of the developed estimation approach and the tire sensor. Experimental results show that the developed sensor can provide good estimation of both slip angle and tire-road friction coefficient.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2010.2053198</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Contact ; Deflection ; Deformation ; Force ; Friction ; Mathematical models ; Observers ; Sensors ; Slip ; Slip angle ; Studies ; tire sensor ; tire-road friction coefficient ; Tires ; Vehicles ; wireless piezoelectric sensor ; wireless tire sensor</subject><ispartof>IEEE sensors journal, 2011-02, Vol.11 (2), p.267-279</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-e4fab228f4164a490149dfe319ef3e689507320200980fe9768d9b50cc18ff603</citedby><cites>FETCH-LOGICAL-c391t-e4fab228f4164a490149dfe319ef3e689507320200980fe9768d9b50cc18ff603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5579971$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5579971$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Erdogan, G</creatorcontrib><creatorcontrib>Alexander, L</creatorcontrib><creatorcontrib>Rajamani, R</creatorcontrib><title>Estimation of Tire-Road Friction Coefficient Using a Novel Wireless Piezoelectric Tire Sensor</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>A tire-road friction coefficient estimation approach is proposed which makes use of the uncoupled lateral deflection profile of the tire carcass measured from inside the tire through the entire contact patch. The unique design of the developed wireless piezoelectric sensor enables the decoupling of the lateral carcass deformations from the radial and tangential deformations. The estimation of the tire-road friction coefficient depends on the estimation of slip angle, lateral tire force, aligning moment, and the use of a brush model. The tire slip angle is estimated as the slope of the lateral deflection curve at the leading edge of the contact patch. The portion of the deflection profile measured in the contact patch is assumed to be a superposition of three types of lateral carcass deformations, namely, shift, yaw, and bend. The force and moment acting on the tire are obtained by using the coefficients of a parabolic function which approximates the deflection profile inside the contact patch and whose terms represent each type of deformation. The estimated force, moment, and slip angle variables are then plugged into the brush model to estimate the tire-road friction coefficient. A specially constructed tire test rig is used to experimentally evaluate the performance of the developed estimation approach and the tire sensor. Experimental results show that the developed sensor can provide good estimation of both slip angle and tire-road friction coefficient.</description><subject>Acceleration</subject><subject>Contact</subject><subject>Deflection</subject><subject>Deformation</subject><subject>Force</subject><subject>Friction</subject><subject>Mathematical models</subject><subject>Observers</subject><subject>Sensors</subject><subject>Slip</subject><subject>Slip angle</subject><subject>Studies</subject><subject>tire sensor</subject><subject>tire-road friction coefficient</subject><subject>Tires</subject><subject>Vehicles</subject><subject>wireless piezoelectric sensor</subject><subject>wireless tire sensor</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhhdRsFZ_gHgJePC0dbKbNMlRSusHpYpt0Yss23QiKduNJltBf73ZtnjwlMnwvMPMkyTnFHqUgrp-mA4nvQziNwOeUyUPkg7lXKZUMHnY1jmkLBevx8lJCCsAqgQXneRtGBq7LhvrauIMmVmP6bMrl2Tkrd52Bw6Nsdpi3ZB5sPU7KcnEfWFFXiJcYQjkyeKPi6VuYmg7g0yxDs6fJkemrAKe7d9uMh8NZ4O7dPx4ez-4Gac6V7RJkZlykWXSMNpnJVNAmVoajGegybEvFQeRZ5ABKAkGlejLpVpw0JpKY_qQd5Or3dwP7z43GJpibYPGqiprdJtQSKaY5FLKSF7-I1du4-u4XEFBgsoUMBEpuqO0dyF4NMWHj5b8d4SK1nfR-i5a38Xed8xc7DIWEf94zoVSgua_rg17Bg</recordid><startdate>20110201</startdate><enddate>20110201</enddate><creator>Erdogan, G</creator><creator>Alexander, L</creator><creator>Rajamani, R</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20110201</creationdate><title>Estimation of Tire-Road Friction Coefficient Using a Novel Wireless Piezoelectric Tire Sensor</title><author>Erdogan, G ; Alexander, L ; Rajamani, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-e4fab228f4164a490149dfe319ef3e689507320200980fe9768d9b50cc18ff603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acceleration</topic><topic>Contact</topic><topic>Deflection</topic><topic>Deformation</topic><topic>Force</topic><topic>Friction</topic><topic>Mathematical models</topic><topic>Observers</topic><topic>Sensors</topic><topic>Slip</topic><topic>Slip angle</topic><topic>Studies</topic><topic>tire sensor</topic><topic>tire-road friction coefficient</topic><topic>Tires</topic><topic>Vehicles</topic><topic>wireless piezoelectric sensor</topic><topic>wireless tire sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erdogan, G</creatorcontrib><creatorcontrib>Alexander, L</creatorcontrib><creatorcontrib>Rajamani, R</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Erdogan, G</au><au>Alexander, L</au><au>Rajamani, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Tire-Road Friction Coefficient Using a Novel Wireless Piezoelectric Tire Sensor</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2011-02-01</date><risdate>2011</risdate><volume>11</volume><issue>2</issue><spage>267</spage><epage>279</epage><pages>267-279</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>A tire-road friction coefficient estimation approach is proposed which makes use of the uncoupled lateral deflection profile of the tire carcass measured from inside the tire through the entire contact patch. The unique design of the developed wireless piezoelectric sensor enables the decoupling of the lateral carcass deformations from the radial and tangential deformations. The estimation of the tire-road friction coefficient depends on the estimation of slip angle, lateral tire force, aligning moment, and the use of a brush model. The tire slip angle is estimated as the slope of the lateral deflection curve at the leading edge of the contact patch. The portion of the deflection profile measured in the contact patch is assumed to be a superposition of three types of lateral carcass deformations, namely, shift, yaw, and bend. The force and moment acting on the tire are obtained by using the coefficients of a parabolic function which approximates the deflection profile inside the contact patch and whose terms represent each type of deformation. The estimated force, moment, and slip angle variables are then plugged into the brush model to estimate the tire-road friction coefficient. A specially constructed tire test rig is used to experimentally evaluate the performance of the developed estimation approach and the tire sensor. Experimental results show that the developed sensor can provide good estimation of both slip angle and tire-road friction coefficient.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2010.2053198</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2011-02, Vol.11 (2), p.267-279
issn 1530-437X
1558-1748
language eng
recordid cdi_crossref_primary_10_1109_JSEN_2010_2053198
source IEEE Electronic Library (IEL)
subjects Acceleration
Contact
Deflection
Deformation
Force
Friction
Mathematical models
Observers
Sensors
Slip
Slip angle
Studies
tire sensor
tire-road friction coefficient
Tires
Vehicles
wireless piezoelectric sensor
wireless tire sensor
title Estimation of Tire-Road Friction Coefficient Using a Novel Wireless Piezoelectric Tire Sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A31%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Tire-Road%20Friction%20Coefficient%20Using%20a%20Novel%20Wireless%20Piezoelectric%20Tire%20Sensor&rft.jtitle=IEEE%20sensors%20journal&rft.au=Erdogan,%20G&rft.date=2011-02-01&rft.volume=11&rft.issue=2&rft.spage=267&rft.epage=279&rft.pages=267-279&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2010.2053198&rft_dat=%3Cproquest_RIE%3E849485888%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1080929047&rft_id=info:pmid/&rft_ieee_id=5579971&rfr_iscdi=true